zoukankan      html  css  js  c++  java
  • 《ucore lab1 exercise5》实验报告

    资源

    1. ucore在线实验指导书
    2. 我的ucore实验代码

    题目:实现函数调用堆栈跟踪函数

    我们需要在lab1中完成kdebug.c中函数print_stackframe的实现,可以通过函数print_stackframe来跟踪函数调用堆栈中记录的返回地址。如果能够正确实现此函数,可在lab1中执行 “make qemu”后,在qemu模拟器中得到类似如下的输出:

    ebp:0x00007b28 eip:0x00100992 args:0x00010094 0x00010094 0x00007b58 0x00100096
    kern/debug/kdebug.c:305: print_stackframe+22
    ebp:0x00007b38 eip:0x00100c79 args:0x00000000 0x00000000 0x00000000 0x00007ba8
    kern/debug/kmonitor.c:125: mon_backtrace+10
    ebp:0x00007b58 eip:0x00100096 args:0x00000000 0x00007b80 0xffff0000 0x00007b84
    kern/init/init.c:48: grade_backtrace2+33
    ebp:0x00007b78 eip:0x001000bf args:0x00000000 0xffff0000 0x00007ba4 0x00000029
    kern/init/init.c:53: grade_backtrace1+38
    ebp:0x00007b98 eip:0x001000dd args:0x00000000 0x00100000 0xffff0000 0x0000001d
    kern/init/init.c:58: grade_backtrace0+23
    ebp:0x00007bb8 eip:0x00100102 args:0x0010353c 0x00103520 0x00001308 0x00000000
    kern/init/init.c:63: grade_backtrace+34
    ebp:0x00007be8 eip:0x00100059 args:0x00000000 0x00000000 0x00000000 0x00007c53
    kern/init/init.c:28: kern_init+88
    ebp:0x00007bf8 eip:0x00007d73 args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8
    <unknow>: -- 0x00007d72 –
    

    请完成实验,看看输出是否与上述显示大致一致,并解释最后一行各个数值的含义。

    提示:可阅读小节“函数堆栈”,了解编译器如何建立函数调用关系的。在完成lab1编译后,查看lab1/obj/bootblock.asm,了解bootloader源码与机器码的语句和地址等的对应关系;查看lab1/obj/kernel.asm,了解 ucore OS源码与机器码的语句和地址等的对应关系。

    要求完成函数kern/debug/kdebug.c::print_stackframe的实现,提交改进后源代码包(可以编译执行) ,并在实验报告中简要说明实现过程,并写出对上述问题的回答。

    补充材料:
    由于显示完整的栈结构需要解析内核文件中的调试符号,较为复杂和繁琐。代码中有一些辅助函数可以使用。例如可以通过调用print_debuginfo函数完成查找对应函数名并打印至屏幕的功能。具体可以参见kdebug.c代码中的注释。

    解答

    代码实现

    1. 编程前,首先了解下当前情况:在Terminal下输入make qemu,发现打印以下信息后就退出了:
    along:~/src/ucore/labcodes/lab1$ sudo make qemu
    WARNING: Image format was not specified for 'bin/ucore.img' and probing guessed raw.
             Automatically detecting the format is dangerous for raw images, write operations on block 0 will be restricted.
             Specify the 'raw' format explicitly to remove the restrictions.
    (THU.CST) os is loading ...
    
    Special kernel symbols:
      entry  0x00100000 (phys)
      etext  0x001036f3 (phys)
      edata  0x0010e950 (phys)
      end    0x0010fdc0 (phys)
    Kernel executable memory footprint: 64KB
    
    1. 分析print_stackframe的函数调用关系
    kern_init ->
        grade_backtrace ->
            grade_backtrace0(0, (int)kern_init, 0xffff0000) ->
                    grade_backtrace1(0, 0xffff0000) ->
                        grade_backtrace2(0, (int)&0, 0xffff0000, (int)&(0xffff0000)) ->
                            mon_backtrace(0, NULL, NULL) ->
                                print_stackframe ->
                                    
    
    1. 找到print_stackframe函数,发现函数里面的注释已经提供了十分详细的步骤,基本上按照提示来做就行了。代码如下所示。
      • 首先定义两个局部变量ebp、esp分别存放ebp、esp寄存器的值。这里将ebp定义为指针,是为了方便后面取ebp寄存器的值。
      • 调用read_ebp函数来获取执行print_stackframe函数时ebp寄存器的值,这里read_ebp必须定义为inline函数,否则获取的是执行read_ebp函数时的ebp寄存器的值。
      • 调用read_eip函数来获取当前指令的位置,也就是此时eip寄存器的值。这里read_eip必须定义为常规函数而不是inline函数,因为这样的话在调用read_eip时会把当前指令的下一条指令的地址(也就是eip寄存器的值)压栈,那么在进入read_eip函数内部后便可以从栈中获取到调用前eip寄存器的值。
      • 由于变量eip存放的是下一条指令的地址,因此将变量eip的值减去1,得到的指令地址就属于当前指令的范围了。由于只要输入的地址属于当前指令的起始和结束位置之间,print_debuginfo都能搜索到当前指令,因此这里减去1即可。
      • 以后变量eip的值就不能再调用read_eip来获取了(每次调用获取的值都是相同的),而应该从ebp寄存器指向栈中的位置再往上一个单位中获取。
      • 由于ebp寄存器指向栈中的位置存放的是调用者的ebp寄存器的值,据此可以继续顺藤摸瓜,不断回溯,直到ebp寄存器的值变为0
    void print_stackframe(void) {
        uint32_t *ebp = 0;
        uint32_t esp = 0;
    
        ebp = (uint32_t *)read_ebp();
        esp = read_eip();
    
        while (ebp)
        {
            cprintf("ebp:0x%08x eip:0x%08x args:", (uint32_t)ebp, esp);
            cprintf("0x%08x 0x%08x 0x%08x 0x%08x
    ", ebp[2], ebp[3], ebp[4], ebp[5]);
            
            print_debuginfo(esp - 1);
    
            esp = ebp[1];
            ebp = (uint32_t *)*ebp;
        }
         /* LAB1 YOUR CODE : STEP 1 */
         /* (1) call read_ebp() to get the value of ebp. the type is (uint32_t);
          * (2) call read_eip() to get the value of eip. the type is (uint32_t);
          * (3) from 0 .. STACKFRAME_DEPTH
          *    (3.1) printf value of ebp, eip
          *    (3.2) (uint32_t)calling arguments [0..4] = the contents in address (uint32_t)ebp +2 [0..4]
          *    (3.3) cprintf("
    ");
          *    (3.4) call print_debuginfo(eip-1) to print the C calling function name and line number, etc.
          *    (3.5) popup a calling stackframe
          *           NOTICE: the calling funciton's return addr eip  = ss:[ebp+4]
          *                   the calling funciton's ebp = ss:[ebp]
          */
    }
    
    1. 编码完成后,执行make qemu,打印结果如下所示,与实验指导书的结果类似。
    ebp:0x00007b38 eip:0x00100bf2 args:0x00010094 0x0010e950 0x00007b68 0x001000a2
        kern/debug/kdebug.c:297: print_stackframe+48
    ebp:0x00007b48 eip:0x00100f40 args:0x00000000 0x00000000 0x00000000 0x0010008d
        kern/debug/kmonitor.c:125: mon_backtrace+23
    ebp:0x00007b68 eip:0x001000a2 args:0x00000000 0x00007b90 0xffff0000 0x00007b94
        kern/init/init.c:48: grade_backtrace2+32
    ebp:0x00007b88 eip:0x001000d1 args:0x00000000 0xffff0000 0x00007bb4 0x001000e5
        kern/init/init.c:53: grade_backtrace1+37
    ebp:0x00007ba8 eip:0x001000f8 args:0x00000000 0x00100000 0xffff0000 0x00100109
        kern/init/init.c:58: grade_backtrace0+29
    ebp:0x00007bc8 eip:0x00100124 args:0x00000000 0x00000000 0x00000000 0x0010379c
        kern/init/init.c:63: grade_backtrace+37
    ebp:0x00007be8 eip:0x00100066 args:0x00000000 0x00000000 0x00000000 0x00007c4f
        kern/init/init.c:28: kern_init+101
    ebp:0x00007bf8 eip:0x00007d6e args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8
        <unknow>: -- 0x00007d6d --
    

    解释最后一行各个参数的含义

    最后一行是 ebp:0x00007bf8 eip:0x00007d6e args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8,共有ebp,eip和args三类参数,下面分别给出解释。

    1. ebp:0x0007bf8 此时ebp的值是kern_init函数的栈顶地址,从obj/bootblock.asm文件中知道整个栈的栈顶地址为0x00007c00,ebp指向的栈位置存放调用者的ebp寄存器的值,ebp+4指向的栈位置存放返回地址的值,这意味着kern_init函数的调用者(也就是bootmain函数)没有传递任何输入参数给它!因为单是存放旧的ebp、返回地址已经占用8字节了。

    2. eip:0x00007d6e eip的值是kern_init函数的返回地址,也就是bootmain函数调用kern_init对应的指令的下一条指令的地址。这与obj/bootblock.asm是相符合的。

        7d6c:	ff d0                	call   *%eax
        7d6e:	ba 00 8a ff ff       	mov    $0xffff8a00,%edx
    
    1. args:0xc031fcfa 0xc08ed88e 0x64e4d08e 0xfa7502a8 一般来说,args存放的4个dword是对应4个输入参数的值。但这里比较特殊,由于bootmain函数调用kern_init并没传递任何输入参数,并且栈顶的位置恰好在boot loader第一条指令存放的地址的上面,而args恰好是kern_int的ebp寄存器指向的栈顶往上第2~5个单元,因此args存放的就是boot loader指令的前16个字节!可以对比obj/bootblock.asm文件来验证(验证时要注意系统是小端字节序)。
    00007c00 <start>:
        7c00:	fa                   	cli    
        7c01:	fc                   	cld    
        7c02:	31 c0                	xor    %eax,%eax
        7c04:	8e d8                	mov    %eax,%ds
        7c06:	8e c0                	mov    %eax,%es
        7c08:	8e d0                	mov    %eax,%ss
        7c0a:	e4 64                	in     $0x64,%al
        7c0c:	a8 02                	test   $0x2,%al
        7c0e:	75 fa                	jne    7c0a <seta20.1>
    
  • 相关阅读:
    浅析Scrapy框架运行的基本流程
    排序和搜索
    设计模式:桥接模式及代码示例、桥接模式在jdbc中的体现、注意事项
    设计模式:适配器模式(类适配器、对象适配器、接口适配器)
    设计模式:建造者模式及在jdk中的体现,建造者模式和工厂模式区别
    java的线程、创建线程的 3 种方式、静态代理模式、Lambda表达式简化线程
    设计模式:原型模式介绍 && 原型模式的深拷贝问题
    设计模式:工厂设计模式介绍及3种写法(简单工厂、工厂方法、抽象工厂)
    设计模式:单例模式介绍及8种写法(饿汉式、懒汉式、Double-Check、静态内部类、枚举)
    设计模式七大原则及代码示例
  • 原文地址:https://www.cnblogs.com/wuhualong/p/ucore_lab1_exercise5_report.html
Copyright © 2011-2022 走看看