zoukankan      html  css  js  c++  java
  • 通过简单的Linux内核启动程序代码窥探操作系统的启动原理

    作者:吴乐  山东师范大学

    《Linux内核分析》 孟宁 MOOC课程http://mooc.study.163.com/course/USTC-1000029000

    一、程序设计与分析

    mymain.c编写如下,参考了孟宁老师的设计。

    /*
     *  linux/mykernel/mymain.c
     *
     *  Kernel internal my_start_kernel
     *
     *  Copyright (C) 2013  Mengning
     *
     */
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"     /* set task[pid].thread.sp to esp */
            "pushl %1
    	"             /* push ebp */
            "pushl %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"                 /* pop task[pid].thread.ip to eip */
            "popl %%ebp
    	"
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    }   
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }

    这是我们模拟kernel的主程序mymain.c/

    linux启动后,系统初始化完成,mymain.c开始运行。

    通过将my_process的地址传入结构体中的ip,再将ip压栈后ret,将地址pop给eip,将系统引导至myprocess开始运行。

    其中while1,保证kernel死循环。

    每执行10000000次检查全局变量my_need_sche,通过my_schedule()来进行进程的切换。

    而对于my_need_sche的修改和my_schedule()函数具体的实现是在时钟中断中模拟进行的。

    my_schedule()函数的代码如下:

    contributor
    RawBlameHistory   93 lines (86 sloc)  2.452 kb
    /*
     *  linux/mykernel/myinterrupt.c
     *
     *  Kernel internal my_timer_handler
     *
     *  Copyright (C) 2013  Mengning
     *
     */
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;      
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
            /* switch to next process */
            asm volatile(    
                "pushl %%ebp
    	"         /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl $1f,%1
    	"       /* save eip */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                "1:	"                  /* next process start here */
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);       
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(    
                "pushl %%ebp
    	"         /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl %2,%%ebp
    	"     /* restore  ebp */
                "movl $1f,%1
    	"       /* save eip */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }   
        return;    
    }

    我们看到,每一千次中断,就模拟切换一次进程。

    通过对当前环境的保存以及建立新的堆栈,来完成对进程的切换。

    二、实验结果

    三、操作系统是如何工作的:

     

        操作系统工作的核心概念是进程,进程是程序的动态执行。大部分的操作系统都有自己的核心进程,系统启动完成最后的操作就是启动核心进程,然后其他的所有执行程序其实都是这个进程的子子孙孙,而这个核心进程可以控制子子孙孙间同步执行和进程切换以及终止子进程,少量指令足以找到更多指令,后者依次再找到更多的指令。操作系统运行起来之后,它就会转而执行一个简单循环,依次把控制权交给准备运行或需要关注的每个应用程序。操作系统会让 CPU 依次处理这些进程,并根据需要在它们之间切换。每个程序会得到一段极短的时间,在程序请求系统服务后或者分配给它的时间用完时结束,操作系统会响应各种事件,比如音乐结束、邮件或网页到达,或者用户按下了键盘上的按键。对这些事件,操作系统都会作出必要的处理,通常是把相应的事件转发给相关的应用程序。

  • 相关阅读:
    Linux新用户创建与删除细节详解
    通过windows远程访问linux桌面的方法(简单)
    物理机网络地址配置原理
    Hive安装中metadata初始化问题
    彻底理解Promise对象——用es5语法实现一个自己的Promise(上篇)
    基于react+react-router+redux+socket.io+koa开发一个聊天室
    深入探析koa之异步回调处理篇
    深入探析koa之中间件流程控制篇
    【踩坑记录】一个新手几乎都踩过的坑...
    NodeJS优缺点及适用场景讨论
  • 原文地址:https://www.cnblogs.com/wule/p/4348577.html
Copyright © 2011-2022 走看看