zoukankan      html  css  js  c++  java
  • UVA 10256 The Great Divide (判断凸包相交)

    题目链接:UVA 10256

    题意

    有n个红点和m个蓝点,问是否存在一条直线能够分开红点和蓝点。

    题解

    分别求出红点和蓝点的凸包,判断两个凸包是否相交。

    凸包不相交的条件:

    • 凸包上的任意点都在另一个凸包的外面
    • 凸包的任意线段都与另一个凸包不相交

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const double eps = 1e-8;
    const double pi = acos(-1.0);
    class Point {
    public:
        double x, y;
        Point(double x = 0, double y = 0) : x(x), y(y) {}
        Point operator+(Point a) {
            return Point(a.x + x, a.y + y);
        }
        Point operator-(Point a) {
            return Point(x - a.x, y - a.y);
        }
        bool operator<(const Point &a) const {
            if (x == a.x)
                return y < a.y;
            return x < a.x;
        }
        bool operator==(const Point &a) const {
            if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
                return 1;
            return 0;
        }
        double length() {
            return sqrt(x * x + y * y);
        }
    };
    
    typedef Point Vector;
    
    double cross(Vector a, Vector b) {
        return a.x * b.y - a.y * b.x;
    }
    
    double dot(Vector a, Vector b) {
        return a.x * b.x + a.y * b.y;
    }
    
    bool isclock(Point p0, Point p1, Point p2) {
        Vector a = p1 - p0;
        Vector b = p2 - p0;
        if (cross(a, b) < -eps)
            return true;
        return false;
    }
    
    double getDistance(Point a, Point b) {
        return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
    }
    
    typedef vector<Point> Polygon;
    Polygon Andrew(Polygon s) {
        Polygon u, l;
        if(s.size() < 3) return s;
        sort(s.begin(), s.end());
        u.push_back(s[0]);
        u.push_back(s[1]);
        l.push_back(s[s.size() - 1]);
        l.push_back(s[s.size() - 2]);
        for(int i = 2 ; i < s.size() ; ++i) {
            for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
                u.pop_back();
            }
            u.push_back(s[i]);
        }
        for(int i = s.size() - 3 ; i >= 0 ; --i) {
            for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
                l.pop_back();
            }
            l.push_back(s[i]);
        }
        for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
        return l;
    }
    
    int dcmp(double x)  {
        if (fabs(x) <= eps)
            return 0;
        return x > 0 ? 1 : -1;
    }
    
    // 判断点在线段上
    bool OnSegment(Point p, Point a1, Point a2) {
        return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
    }
    
    // 判断线段相交
    bool Intersection(Point a1, Point a2, Point b1, Point b2) {
        double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1),
                c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1);
        return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    }
    
    // 判断点在凸包内
    int isPointInPolygon(Point p, vector<Point> s) {
        int wn = 0, cc = s.size();
        for (int i = 0; i < cc; i++) {
            Point p1 = s[i];
            Point p2 = s[(i + 1) % cc];
            if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
            int k = dcmp(cross(p2 - p1, p - p1));
            int d1 = dcmp(p1.y - p.y);
            int d2 = dcmp(p2.y - p.y);
            if (k > 0 && d1 <= 0 && d2 > 0) wn++;
            if (k < 0 && d2 <= 0 && d1 > 0) wn--;
        }
        if (wn != 0) return 1;
        return 0;
    }
    
    void solve(Polygon s1, Polygon s2) {
        int c1 = s1.size(), c2 = s2.size();
        for(int i = 0; i < c1; ++i) {
            if(isPointInPolygon(s1[i], s2)) {
                printf("No
    ");
                return;
            }
        }
        for(int i = 0; i < c2; ++i) {
            if(isPointInPolygon(s2[i], s1)) {
                printf("No
    ");
                return;
            }
        }
        for (int i = 0; i < c1; i++) {
            for (int j = 0; j < c2; j++) {
                if (Intersection(s1[i], s1[(i + 1) % c1], s2[j], s2[(j + 1) % c2])) {
                    printf("No
    ");
                    return;
                }
            }
        }
        printf("Yes
    ");
    }
    
    int main() {
        int n, m;
        while (cin >> n >> m) {
            if(n == 0 && m == 0) break;
            Polygon s1, s2;
            for (int i = 0; i < n; ++i) {
                double x1, x2;
                scanf("%lf%lf", &x1, &x2);
                s1.push_back(Point(x1, x2));
            }
            for (int i = 0; i < m; ++i) {
                double x1, x2;
                scanf("%lf%lf", &x1, &x2);
                s2.push_back(Point(x1, x2));
            }
            if(s1.size()) s1 = Andrew(s1);
            if(s2.size()) s2 = Andrew(s2);
            solve(s1, s2);
        }
        return 0;
    }
    

    参考

    《算法竞赛入门经典》 刘汝佳 / 陈锋

  • 相关阅读:
    Java实现热替换
    SQL判断字符串里不包含字母
    Useful bat command
    Entity FrameworkCore教程(一):包概念理解
    Docker:Docker常见命令
    ASP.NET Core:ASP.NET Core程序使用Docker部署
    ASP.NET Core:中间件
    ASP.NET Core:依赖注入
    Jenkins:创建定时构建任务
    ASP.NET Core 3.1使用Swagger
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11391803.html
Copyright © 2011-2022 走看看