zoukankan      html  css  js  c++  java
  • POJ 3090 Visible Lattice Points (欧拉函数)

    题目链接:POJ 3090

    Description

    A lattice point ((x, y)) in the first quadrant ((x) and (y) are integers greater than or equal to (0)), other than the origin, is visible from the origin if the line from ((0, 0)) to ((x, y)) does not pass through any other lattice point. For example, the point ((4, 2)) is not visible since the line from the origin passes through ((2, 1)). The figure below shows the points ((x, y)) with (0 le x, y le 5) with lines from the origin to the visible points.

    title

    Write a program which, given a value for the size, (N), computes the number of visible points ((x, y)) with (0 le x, y le N).

    Input

    The first line of input contains a single integer (C (1 le C le 1000)) which is the number of datasets that follow.

    Each dataset consists of a single line of input containing a single integer (N (1 le N le 1000)), which is the size.

    Output

    For each dataset, there is to be one line of output consisting of: the dataset number starting at (1), a single space, the size, a single space and the number of visible points for that size.

    Sample Input

    4
    2
    4
    5
    231
    

    Sample Output

    1 2 5
    2 4 13
    3 5 21
    4 231 32549
    

    Source

    Greater New York 2006

    Solution

    题意

    给定一个大小为 (N * N) 的矩形,每个格点插着钉子,问从 ((0, 0)) 点能看到多少钉子。

    题解

    欧拉函数

    容易发现除了 ((0, 1)) ((1, 0)) ((1, 1)),如果一个钉子 ((x, y)) 能被看到,那么 (gcd(x, y) = 1, x eq y)。由于能看到的钉子关于过 ((0, 0))((N, N)) 的直线对称,因此只考虑一半即可。对于每个 (x in [2, N]),需要求出多少个 (y) 满足 (gcd(x, y) = 1, 1 le y < x),也就是求 (x) 的欧拉函数。

    因此答案为 (3 + 2 * sum_{i=2}^N varphi(i)),其中 (varphi(i)) 为欧拉函数。

    Code

    #include <iostream>
    #include <cstdio>
    using namespace std;
    typedef long long ll;
    
    const int maxn = 1e4 + 10;
    
    int primes[maxn], cnt;
    int phi[maxn];
    bool v[maxn];
    
    void get_eulers(int n) {
        for(int i = 2; i <= n; ++i) {
            if(!v[i]) {
                primes[cnt++] = i;
                phi[i] = i - 1;
            }
            for(int j = 0; primes[j] <= n / i; ++j) {
                v[primes[j] * i] = 1;
                if(i % primes[j] == 0) {
                    phi[primes[j] * i] = primes[j] * phi[i];
                    break;
                }
                phi[primes[j] * i] = phi[i] * (primes[j] - 1);
            }
        }
    
    }
    
    int main() {
        get_eulers(1001);
        ios::sync_with_stdio(false);
        cin.tie(0);
        int T;
        cin >> T;
        int kase = 0;
        while(T--) {
            int n;
            cin >> n;
            ll sum = 0;
            for(int i = 2; i <= n; ++i) {
                sum += phi[i];
            }
            cout << ++kase << " " << n << " ";
            cout << 3 + 2 * sum << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    独家首发Java品优购项目课程,20天课程,430个知识点!视频+资料全部免费领!
    Java8 Stream:2万字20个实例,玩转集合的筛选、归约、分组、聚合
    你还在 if...else?代码这样写才好看!
    关于破解
    菜鸟上路
    4、udtf、udf、udaf
    【模板】快速排序
    最短路问题:迪杰斯特拉算法(Dijsktra)
    最短路径问题:弗洛伊德算法(Floyd)
    栈的基本概念
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11552179.html
Copyright © 2011-2022 走看看