zoukankan      html  css  js  c++  java
  • Hdu3498-whosyourdaddy(精确覆盖模板题)

    Problem Description
    sevenzero liked Warcraft very much, but he haven't practiced it for several years after being addicted to algorithms. Now, though he is playing with computer, he nearly losed and only his hero Pit Lord left. sevenzero is angry, he decided to cheat to turn defeat into victory. So he entered "whosyourdaddy", that let Pit Lord kill any hostile unit he damages immediately. As all Warcrafters know, Pit Lord masters a skill called Cleaving Attack and he can damage neighbour units of the unit he attacks. Pit Lord can choice a position to attack to avoid killing partial neighbour units sevenzero don't want to kill. Because sevenzero wants to win as soon as possible, he needs to know the minimum attack times to eliminate all the enemys.
     
    Input
    There are several cases. For each case, first line contains two integer N (2 ≤ N ≤ 55) and M (0 ≤ M ≤ N*N),and N is the number of hostile units. Hostile units are numbered from 1 to N. For the subsequent M lines, each line contains two integers A and B, that means A and B are neighbor. Each unit has no more than 4 neighbor units. The input is terminated by EOF.
     
    Output
    One line shows the minimum attack times for each case.
     
    Sample Input
    5 4
    1 2
    1 3
    2 4
    4 5
    6 4
    1 2
    1 3
    1 4
    4 5
     
    Sample Output
    2
    3

    解析:裸的精确覆盖问题,不过要加优化,不过也是模板。

    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    using namespace std;
    const int INF=1e9+7;
    const int ms=60;
    const int maxn=ms*ms;
    int N,M,ans;
    struct DLX
    {
        int n,id;
        int L[maxn],R[maxn],U[maxn],D[maxn];
        int C[maxn],S[maxn],loc[maxn][2];
        void init(int nn=0) //传列长
        {
            n=nn;
            for(int i=0;i<=n;i++) U[i]=D[i]=i,L[i]=i-1,R[i]=i+1;
            L[0]=n; R[n]=0;
            id=n;
            memset(S,0,sizeof(S));
        }
        void AddRow(int x,int col,int A[]) //传入参数是行标号,列长,列数组
        {
            bool has=false;
            int first=id+1;
            for(int y=1;y<=col;y++)
            {
                if(A[y]==0) continue;
                has=true;
                ++id;
                L[id]=id-1; R[id]=id+1;
                D[id]=y; U[id]=U[y];
                D[U[y]]=id; U[y]=id;
                loc[id][0]=x,loc[id][1]=y;
                C[id]=y; S[y]++;
            }
            if(!has) return;
            R[id]=first; L[first]=id;
        }
        void Remove(int Size)
        {
            for(int j=D[Size];j!=Size;j=D[j])//将左右两边连接
                L[R[j]]=L[j],R[L[j]]=R[j];
        }
        void Resume(int Size)
        {
            for(int j=U[Size];j!=Size;j=U[j])//恢复
                L[R[j]]=R[L[j]]=j;
        }
        bool vis[ms];//标记行是否访问过
        int h() //启发式函数
        {
            int ret=0;
            int i,j,k;
            memset(vis,0,sizeof(vis));
            for(i=R[0];i;i=R[i])
            {
               if(vis[i]) continue;
               ret++;
               for(j=D[i];j!=i;j=D[j]) //所有关联的标记了
                   for(k=R[j];k!=j;k=R[k]) vis[C[k]]=1;
            }
            return ret;
        }
        void dfs(int step)
        {
            if(step+h()>=ans) return;
            if(R[0]==0){ ans=min(ans,step); return; }
            int Min=INF,c=-1;
            for(int i=R[0];i;i=R[i]) if(Min>S[i]){ Min=S[i]; c=i; }
            for(int i=D[c];i!=c;i=D[i])
            {
                Remove(i);
                for(int j=R[i];j!=i;j=R[j]) Remove(j);
                dfs(step+1);
                for(int j=L[i];j!=i;j=L[j]) Resume(j);
                Resume(i);
            }
            return;
        }
    }dlx;
    int Mart[ms][ms];
    int main()
    {
        while(scanf("%d%d",&N,&M)!=EOF)
        {
            dlx.init(N);
            ans=55;
            memset(Mart,0,sizeof(Mart));
            for(int i=1;i<=N;i++) Mart[i][i]=1;
            while(M--)
            {
                int x,y;
                scanf("%d%d",&x,&y);
                Mart[x][y]=Mart[y][x]=1;
            }
            for(int i=1;i<=N;i++) dlx.AddRow(i,N,Mart[i]);
            dlx.dfs(0);
            printf("%d
    ",ans);
        }
        return 0;
    }
    View Code

    代码

  • 相关阅读:
    fstab是什么?被谁用?怎么写?
    一个驱动导致的内存泄漏问题的分析过程(meminfo->pmap->slabtop->alloc_calls)
    Ubuntu下doxygen+graphviz使用概录
    记录Ubuntu下使用docker使用
    hidraw设备简要分析
    一个版本烧录过程中记录:fdisk、mkfs.ext4、make_ext4fs、img2simg、simg2img
    bootrom/spl/uboot/linux逐级加载是如何实现的?
    Linux uevent分析、用户接收uevent以及mdev分析
    sched_yield()和nanosleep()对进程调度的影响
    Linux Thermal Framework分析及实施
  • 原文地址:https://www.cnblogs.com/wust-ouyangli/p/5747090.html
Copyright © 2011-2022 走看看