Counting Divisors
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1604 Accepted Submission(s): 592
Problem Description
In mathematics, the function d(n) denotes the number of divisors of positive integer n.
For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.
In this problem, given l,r and k, your task is to calculate the following thing :
For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.
In this problem, given l,r and k, your task is to calculate the following thing :
(∑i=lrd(ik))mod998244353
Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107).
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107).
Output
For each test case, print a single line containing an integer, denoting the answer.
Sample Input
3
1 5 1
1 10 2
1 100 3
Sample Output
10
48
2302
Source
Recommend
/* * @Author: Lyucheng * @Date: 2017-08-03 13:13:45 * @Last Modified by: Lyucheng * @Last Modified time: 2017-08-04 11:25:19 */ /* 题意:给你一个区间[l,r]让你求区间内每个数的k次方因子数的总和 思路:比赛的时候想出来 i^k的因子是 (n1*k+1)*(n2*k+1)*...*(np*k+1),但是没想出来怎么优化,素数枚举 很烦,四场比赛每次差一点,比赛的时候想的是枚举[l,r]之间的数,优化到8300ms,实在没法优化了,应 该反过来想,枚举从[l,r]的素因子,因为i素因子的个数远小于i,大多数在sqrt i内,最多只有一个在sqrt i 之外。 */ #include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> #define LL long long #define mod 998244353 #define MAXN 1000005 using namespace std; int t; LL l,r,k; LL res; LL d[MAXN]; LL pos[MAXN]; bool prime[MAXN]; LL p[MAXN]; int tol; void init(){ tol=0; for(int i=0;i<MAXN;i++){ prime[i]=true; } prime[0]=prime[1]=false; for(int i=2;i<MAXN;i++){ if(prime[i]) p[tol++]=(LL)i; for(int j=0;j<tol&&i*p[j]<MAXN;j++){ prime[i*p[j]]=false; if((LL)i%p[j]==0) break; } } } int main(){ // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); init(); scanf("%d",&t); while(t--){ res=0; scanf("%I64d%I64d%I64d",&l,&r,&k); for(LL i=l;i<=r;i++){ d[(int)(i-l)]=1; pos[(int)(i-l)]=i; } for(int i=0;i<tol;i++){//枚举所有的素数 if(p[i]<=0) continue; LL cnt=(l+p[i]-1)/p[i]*p[i];//找出[l,r]区间内的第一个p[i]的倍数 if(cnt-l<0||cnt-l>r-l) continue; for(int j=cnt-l;j<=r-l;j+=p[i]){ LL cur=0; while(pos[j]&&pos[j]%p[i]==0){ cur++; pos[j]/=p[i]; } d[j]*=(cur*k+1); d[j]%=mod; } } for(int i=0;i<=r-l;i++){ if(pos[i]==1) res+=d[i]; else res+=d[i]*(k+1); res%=mod; } printf("%I64d ",res); } return 0; }