zoukankan      html  css  js  c++  java
  • 2017 ICPC 广西邀请赛1004 Covering

    Covering

    Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 187    Accepted Submission(s): 107


    Problem Description
    Bob's school has a big playground, boys and girls always play games here after school.

    To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

    Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

    He has infinite carpets with sizes of 1×2 and 2×1, and the size of the playground is 4×n.

    Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?
     
    Input
    There are no more than 5000 test cases. 

    Each test case only contains one positive integer n in a line.

    1n1018
     
    Output
    For each test cases, output the answer mod 1000000007 in a line.
     
    Sample Input
    1 2
     
    Sample Output
    1 5
     
    Source
     
    打表
    /*
    * @Author: Administrator
    * @Date:   2017-08-31 17:40:04
    * @Last Modified by:   Administrator
    * @Last Modified time: 2017-09-01 11:03:00
    */
    /*
     题意:给你一个4*n的矩阵,然后让你用1*2和2*1的木块放,问你完美覆盖的
        方案数
    
     思路:状压DP找规律
    */
    
    #include <bits/stdc++.h>
    
    #define MAXN 100
    #define MAXM 20
    #define MAXK 15
    using namespace std;
    
    int dp[MAXN][MAXM];//dp[i][j]表示前ihang 
    int n;
    
    inline bool ok(int x){
        //判断是不是有连续个1的个数是奇数
        int res=0;
        while(x){
            if(x%2==1){
                res++;
            }else{
                if(res%2==1) return false;
                else res=0;
            }
            x/=2;
        }
        if(res%2==1) return false;
        else return true;
    }
    
    inline void init(){
        memset(dp,0,sizeof dp);
    }
    
    int main(){
        freopen("in.txt","r",stdin);
        for(int n=1;n<=50;n++){
            init();
            for(int i=0;i<=MAXK;i++){//初始化第一行的没种状态
                if(ok(i)==true)
                    dp[1][i]=1;
            }
            for(int i=1;i<n;i++){
                for(int j=0;j<=MAXK;j++){
                    if(dp[i][j]!=0){
                        for(int k=0;k<=MAXK;k++){
                            if( (j|k)==MAXK && ok(j&k) )
                                ///j|k==tot-1的话就是能拼起来组成
                                dp[i+1][k]+=dp[i][j];
                        }
                    }
                }
            }
            printf("%d
    ",dp[n][MAXK]);
        }
        return 0;
    }
    /*
    * @Author: Administrator
    * @Date:   2017-09-01 11:17:37
    * @Last Modified by:   Administrator
    * @Last Modified time: 2017-09-01 11:28:09
    */
    #include <bits/stdc++.h>
    
    #define MAXN 5
    #define mod 1000000007
    #define LL long long
    
    using namespace std;
    
    /********************************矩阵快速幂**********************************/
    class Matrix {
        public:
            LL a[MAXN][MAXN];
            LL n;  
    
            void init(LL x) {
                memset(a,0,sizeof(a));
                if (x)  
                    for (int i = 0; i < MAXN ; i++)
                        a[i][i] = 1LL;
            }
            
            Matrix operator +(Matrix b) {
                Matrix c;
                c.n = n;
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        c.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
                return c;
            }
    
            Matrix operator +(LL x) {
                Matrix c = *this;
                for (int i = 0; i < n; i++)
                    c.a[i][i] += x;
                return c;
            }
    
            Matrix operator *(Matrix b)
            {
                Matrix p;
                p.n = b.n;   
                p.init(0);
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                    for (int k = 0; k < n; k++)
                        p.a[i][j] = (p.a[i][j] + (a[i][k]*b.a[k][j])%mod) % mod;
                return p;
            }
    
            Matrix power(LL t) {
                Matrix ans,p = *this;
                ans.n = p.n;  
                ans.init(1);
                while (t) {
                    if (t & 1)
                        ans=ans*p;
                    p = p*p;
                    t >>= 1;
                }
                return ans;
            }
    }init,unit;
    /********************************矩阵快速幂**********************************/
    
    LL n;
    
    int main(){
        // freopen("in.txt","r",stdin);
        while(scanf("%lld",&n)!=EOF){
            if(n<=4){
                switch(n){
                    case 1:
                        puts("1");
                        break;
                    case 2:
                        puts("5");
                        break;
                    case 3:
                        puts("11");
                        break;
                    case 4:
                        puts("36");
                        break;
                }
                continue;
            }
            init.init(0);
            init.n=4;
            init.a[0][0]=36;
            init.a[0][1]=11;
            init.a[0][2]=5;
            init.a[0][3]=1;
            unit.init(0);
            unit.n=4;
            unit.a[0][0]=1;
            unit.a[1][0]=5;
            unit.a[2][0]=1;
            unit.a[3][0]=-1;
            unit.a[0][1]=1;
            unit.a[1][2]=1;
            unit.a[2][3]=1;
            unit=unit.power(n-4);
            init=init*unit;
            printf("%lld
    ",(init.a[0][0]+mod)%mod);
        }
        return 0;
    }
  • 相关阅读:
    2012年决胜HTML5 十四大Web预测盘点
    王海波:Discuz! X 社区功能架构
    史应生:Linux操作系统的性能优化技术
    虚拟还原原理解析
    金山张宴:PHP在金山游戏运营中的应用
    java方法的参数传递
    java逻辑连接词总结
    java名称命名规范
    java引用包的两种方式
    java信息的封装和隐藏
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/7462479.html
Copyright © 2011-2022 走看看