zoukankan      html  css  js  c++  java
  • HDU 1712 ACboy needs your help 典型的分组背包

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1712

    ACboy needs your help

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3045    Accepted Submission(s): 1581


    Problem Description
    ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the profit?
     
    Input
    The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
    Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
    N = 0 and M = 0 ends the input.
     
    Output
    For each data set, your program should output a line which contains the number of the max profit ACboy will gain.
     
    Sample Input
    2 2
    1 2
    1 3
    2 2
    2 1
    2 1
    2 3
    3 2 1
    3 2 1
    0 0
     
    Sample Output
    3
    4
    6
     
    解题思路:背包问题,每门课不管多少时间只能选一次,所以是典型的分组背包问题。
     
    想深究可以去看《背包九讲》,把背包问题讲的很详细
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 int keng[101][101];
     7 int dp[101];
     8 int main()
     9 {
    10     int n,m,i,j,k;
    11     while(scanf("%d%d",&n,&m),n+m!=0)
    12     {
    13         memset(dp,0,sizeof(dp));
    14         for(i=1;i<=n;i++)
    15         for(j=1;j<=m;j++)
    16         {
    17             scanf("%d",&keng[i][j]);
    18         }
    19         for(i=n;i>0;i--)
    20         for(j=m;j>=0;j--)
    21         for(k=1;k<=j;k++)
    22             if(dp[j]<dp[j-k]+keng[i][k])
    23                 dp[j]=dp[j-k]+keng[i][k];
    24         printf("%d
    ",dp[m]);
    25     }
    26     return 0;
    27 }
    View Code
  • 相关阅读:
    Div+Css布局教程(-)CSS必备知识
    html表格设置
    wxAui Frame Management用法
    aui
    MySQL死锁
    InnoDB索引存储结构
    MySQL事务调优
    MySQL慢SQL语句常见诱因
    InnoDB的LRU淘汰策略
    InnoDB事务之redo log工作原理
  • 原文地址:https://www.cnblogs.com/wuwing/p/3312446.html
Copyright © 2011-2022 走看看