1、计算的均值和方差是channel的
2、test/predict 或者use_global_stats的时候,直接使用moving average
use_global_stats 表示是否使用全部数据的统计值(该数据实在train 阶段通过moving average 方法计算得到)训练阶段设置为 fasle, 表示通过当前的minibatch 数据计算得到, test/predict 阶段使用 通过全部数据计算得到的统计值
那什么是 moving average 呢:
反向传播:
源码:(注:caffe_cpu_scale 是y=alpha*x ,这里面求滑动均值时候,alpha是滑动系数和的倒数,x是滑动均值和
template <typename Dtype> void BatchNormLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); int num = bottom[0]->shape(0); int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_); if (bottom[0] != top[0]) { caffe_copy(bottom[0]->count(), bottom_data, top_data); } if (use_global_stats_) { // use the stored mean/variance estimates. const Dtype scale_factor = this->blobs_[2]->cpu_data()[0] == 0 ? 0 : 1 / this->blobs_[2]->cpu_data()[0]; caffe_cpu_scale(variance_.count(), scale_factor, this->blobs_[0]->cpu_data(), mean_.mutable_cpu_data()); caffe_cpu_scale(variance_.count(), scale_factor, this->blobs_[1]->cpu_data(), variance_.mutable_cpu_data()); } else { // compute mean caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1. / (num * spatial_dim), bottom_data, spatial_sum_multiplier_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1., num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., mean_.mutable_cpu_data()); } // subtract mean caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num, spatial_dim, 1, -1, num_by_chans_.cpu_data(), spatial_sum_multiplier_.cpu_data(), 1., top_data); if (!use_global_stats_) { // compute variance using var(X) = E((X-EX)^2) caffe_powx(top[0]->count(), top_data, Dtype(2), temp_.mutable_cpu_data()); // (X-EX)^2 caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1. / (num * spatial_dim), temp_.cpu_data(), spatial_sum_multiplier_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1., num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., variance_.mutable_cpu_data()); // E((X_EX)^2) // compute and save moving average this->blobs_[2]->mutable_cpu_data()[0] *= moving_average_fraction_; this->blobs_[2]->mutable_cpu_data()[0] += 1; caffe_cpu_axpby(mean_.count(), Dtype(1), mean_.cpu_data(), moving_average_fraction_, this->blobs_[0]->mutable_cpu_data()); int m = bottom[0]->count()/channels_; Dtype bias_correction_factor = m > 1 ? Dtype(m)/(m-1) : 1; caffe_cpu_axpby(variance_.count(), bias_correction_factor, variance_.cpu_data(), moving_average_fraction_, this->blobs_[1]->mutable_cpu_data()); } // normalize variance caffe_add_scalar(variance_.count(), eps_, variance_.mutable_cpu_data()); caffe_powx(variance_.count(), variance_.cpu_data(), Dtype(0.5), variance_.mutable_cpu_data()); // replicate variance to input size caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, batch_sum_multiplier_.cpu_data(), variance_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num, spatial_dim, 1, 1., num_by_chans_.cpu_data(), spatial_sum_multiplier_.cpu_data(), 0., temp_.mutable_cpu_data()); caffe_div(temp_.count(), top_data, temp_.cpu_data(), top_data); // TODO(cdoersch): The caching is only needed because later in-place layers // might clobber the data. Can we skip this if they won't? caffe_copy(x_norm_.count(), top_data, x_norm_.mutable_cpu_data()); } template <typename Dtype> void BatchNormLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { const Dtype* top_diff; if (bottom[0] != top[0]) { top_diff = top[0]->cpu_diff(); } else { caffe_copy(x_norm_.count(), top[0]->cpu_diff(), x_norm_.mutable_cpu_diff()); top_diff = x_norm_.cpu_diff(); } Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); if (use_global_stats_) { caffe_div(temp_.count(), top_diff, temp_.cpu_data(), bottom_diff); return; } const Dtype* top_data = x_norm_.cpu_data(); int num = bottom[0]->shape()[0]; int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_); // if Y = (X-mean(X))/(sqrt(var(X)+eps)), then // // dE(Y)/dX = // (dE/dY - mean(dE/dY) - mean(dE/dY cdot Y) cdot Y) // ./ sqrt(var(X) + eps) // // where cdot and ./ are hadamard product and elementwise division, // respectively, dE/dY is the top diff, and mean/var/sum are all computed // along all dimensions except the channels dimension. In the above // equation, the operations allow for expansion (i.e. broadcast) along all // dimensions except the channels dimension where required. // sum(dE/dY cdot Y) caffe_mul(temp_.count(), top_data, top_diff, bottom_diff); caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1., bottom_diff, spatial_sum_multiplier_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1., num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., mean_.mutable_cpu_data()); // reshape (broadcast) the above caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num, spatial_dim, 1, 1., num_by_chans_.cpu_data(), spatial_sum_multiplier_.cpu_data(), 0., bottom_diff); // sum(dE/dY cdot Y) cdot Y caffe_mul(temp_.count(), top_data, bottom_diff, bottom_diff); // sum(dE/dY)-sum(dE/dY cdot Y) cdot Y caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1., top_diff, spatial_sum_multiplier_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1., num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., mean_.mutable_cpu_data()); // reshape (broadcast) the above to make // sum(dE/dY)-sum(dE/dY cdot Y) cdot Y caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0., num_by_chans_.mutable_cpu_data()); caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num * channels_, spatial_dim, 1, 1., num_by_chans_.cpu_data(), spatial_sum_multiplier_.cpu_data(), 1., bottom_diff); // dE/dY - mean(dE/dY)-mean(dE/dY cdot Y) cdot Y caffe_cpu_axpby(temp_.count(), Dtype(1), top_diff, Dtype(-1. / (num * spatial_dim)), bottom_diff); // note: temp_ still contains sqrt(var(X)+eps), computed during the forward // pass. caffe_div(temp_.count(), bottom_diff, temp_.cpu_data(), bottom_diff); } #ifdef CPU_ONLY STUB_GPU(BatchNormLayer); #endif INSTANTIATE_CLASS(BatchNormLayer); REGISTER_LAYER_CLASS(BatchNorm); } // namespace caffe