class Queue: def __init__(self,max_size): self.max_size = int(max_size) self.queue = [] def put(self,data): if self.max_size > 0: if self.full(): raise ValueError('Queue is full!') else: self._put(data) def get(self): if self._queue_size() > 0: result = self._get() empty_flag = False else: result = None empty_flag = True return result def empty(self): if self._queue_size() == 0: return True else: return False def full(self): if self._queue_size() == self.max_size: return True else: return False def _put(self,data): self.queue.append(data) def _get(self): result = self.queue[0] self.queue.pop(0) return result def _queue_size(self): return len(self.queue) def travel_dbfs(self,first_node):#图的深度遍历 stack_lsit = [] visited = [] stack_lsit.append(first_node) visited.append(first_node) while len(stack_lsit) > 0: x = stack_lsit[-1] for w in x.neighbor_list: if not w in visited: print(w.data) visited.append(w) stack_lsit.append(w) break if stack_lsit[-1] == x: stack_lsit.pop() def travel_bfs(self,first_node):#图的广度遍历 queue = Queue(100000) visited = [] queue.put(first_node) visited.append(first_node) while not queue.empty(): v =queue.get() i = 1 try: w=v.neighbor_list[i] except IndexError: w = None while w: if not w in visited: print(w.name) visited.append(w) queue.put(w) i = i+1 try: w = v.neighbor_list[i] except IndexError: w = None class GraphNode: def __init__(self,data): self.neighbor_list = [] self.data = data
深度优先遍历与广度优先遍历
深度优先遍历
1.深度优先遍历的递归定义
假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历
2.基本实现思想:
(1)访问顶点v;
(2)从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
(3)重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
3.伪代码
递归实现
(1)访问顶点v;visited[v]=1;//算法执行前visited[n]=0
(2)w=顶点v的第一个邻接点;
(3)while(w存在)
if(w未被访问)
从顶点w出发递归执行该算法;
w=顶点v的下一个邻接点;
非递归实现
(1)栈S初始化;visited[n]=0;
(2)访问顶点v;visited[v]=1;顶点v入栈S
(3)while(栈S非空)
x=栈S的顶元素(不出栈);
if(存在并找到未被访问的x的邻接点w)
访问w;visited[w]=1;
w进栈;
else
x出栈;
广度优先遍历
1.广度优先遍历定义
图的广度优先遍历BFS算法是一个分层搜索的过程,和树的层序遍历算法类同,它也需要一个队列以保持遍历过的顶点顺序,以便按出队的顺序再去访问这些顶点的邻接顶点。
2.基本实现思想
(1)顶点v入队列。
(2)当队列非空时则继续执行,否则算法结束。
(3)出队列取得队头顶点v;访问顶点v并标记顶点v已被访问。
(4)查找顶点v的第一个邻接顶点col。
(5)若v的邻接顶点col未被访问过的,则col入队列。
(6)继续查找顶点v的另一个新的邻接顶点col,转到步骤(5)。
直到顶点v的所有未被访问过的邻接点处理完。转到步骤(2)。
广度优先遍历图是以顶点v为起始点,由近至远,依次访问和v有路径相通而且路径长度为1,2,……的顶点。为了使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问,需设置队列存储访问的顶点。
3.伪代码
(1)初始化队列Q;visited[n]=0;
(2)访问顶点v;visited[v]=1;顶点v入队列Q;
(3) while(队列Q非空)
v=队列Q的对头元素出队;
w=顶点v的第一个邻接点;
while(w存在)
如果w未访问,则访问顶点w;
visited[w]=1;
顶点w入队列Q;
w=顶点v的下一个邻接点。