zoukankan      html  css  js  c++  java
  • 判断两个矩形相交

    假定矩形是用一对点表达的(minx, miny) (maxx, maxy),那么两个矩形
        rect1{(minx1, miny1)(maxx1, maxy1)}
        rect2{(minx2, miny2)(maxx2, maxy2)}  
    相交的结果一定是个矩形,构成这个相交矩形rect{(minx, miny) (maxx, maxy)}的点对坐标是:  
        minx   =   max(minx1,   minx2)  
        miny   =   max(miny1,   miny2)  
        maxx   =   min(maxx1,   maxx2)  
        maxy   =   min(maxy1,   maxy2)  
       
    如果两个矩形不相交,那么计算得到的点对坐标必然满足:  
      ( minx  >  maxx ) 或者 ( miny  >  maxy ) 
       
    判定是否相交,以及相交矩形是什么都可以用这个方法一体计算完成。

    从这个算法的结果上,我们还可以简单的生成出下面的两个内容:

    ㈠ 相交矩形:  (minx, miny) (maxx, maxy)

    ㈡ 面积: 面积的计算可以和判定一起进行         if ( minx>maxx ) return 0;         if ( miny>maxy ) return 0;         return (maxx-minx)*(maxy-miny)

    第二种方法

    两个矩形相交的条件:两个矩形的重心距离在X和Y轴上都小于两个矩形长或宽的一半之和.这样,分两次判断一下就行了.

    即:重心距离在X轴上投影长度 < 两个矩形的在X轴的长度之和/2

    重心距离在Y轴上投影长度 < 两个矩形在Y轴的宽度之和/2

    bool CrossLine(Rect r1,RECT r2) { if(abs((r1.x1+r1.x2)/2-(r2.x1+r2.x2)/2)<((r1.x2+r2.x2-r1.x1-r2.x1)/2) && abs((r1.y1+r1.y2)/2-(r2.y1+r2.y2)/2)<((r1.y2+r2.y2-r1.y1-r2.y1)/2)) return true; return false;

    http://www.cnblogs.com/0001/archive/2010/05/04/1726905.html

    }

  • 相关阅读:
    JavaScript入门二
    JavaScript入门
    CSS样式之补充
    CSS样式之操作属性二
    隔空手势操作
    项目管理培训(2)
    uoot启动过程
    new work
    库函数开发步骤 (转)
    keil(持续更新)
  • 原文地址:https://www.cnblogs.com/wuyuewoniu/p/4003336.html
Copyright © 2011-2022 走看看