题面
2.12 - - -
题解
大概还是挺妙的?
首先基础分和连击分互不干扰,所以可以分开统计。
基础分的统计比较简单,等于:
连击分的统计就比较复杂了,因为是求期望,根据期望的线性性,我们可以先算出(f_i)表示每个音符的期望连击分,再计算整个区间的期望连击分。
观察连击分的统计方法,可以知道,区间其实是互不干扰的,也就是说,每个区间中的期望连击分,其实都是在对进入这个区间时的期望连击分(f_{l - 1})的一个叠加和增幅。
考虑区间的期望连击分可以表示为:
因为只有这次打到了完美才可以计入这个音符的贡献,所以这次的贡献是建立在当前音符完美的情况下的,所以贡献就是(p_i(f_{i - 1} + 1))了。
考虑(f_i)如何转移。
观察到这是一个类似于(kx + b)的形式,因此对于一个(f_i),如果一个(j)满足(j le i),那么一定可以表示为(f_i = kf_j + b)的形式。
那么对于区间([l, r]),因为其中每个(f_i),都可以表示为类似(kf_{l - 1} + b)的形式,因此,这个区间的连击分也一定可以表示为(kf_{l - 1} + b)的形式。
因此我们考虑线段树,对于区间([l, r])我们维护5个变量,(k, b, sumb, sumk, sump),其中(sump)是用来算基础分的,(sumb, sumk)就是区间连击分的系数,(k, b)则是(f_r = kf_{l - 1} + b)中的(k)和(b).
因为(B)是对于整个区间的系数,因此我们可以先不考虑它,直接统计后面的部分,最后再乘上(B)即可。
因此我们考虑如何合并2个区间([l, mid], [mid + 1, r]).
根据前面的推导,现在有
现在要合并这2个变量,我们只需要把后者表示为(kf_{l - 1} + b)的形式即可。
所以直接把(f_{mid})带入后面的等式化简就行了,化简出来新变量的(k = k_l k_r, quad b = k_rb_l + b_r)
然后来考虑合并区间信息:
现在我们有:
我们现在要得到的新区间应该要形如第一个区间的样子,因为第一个区间已经是这样了,所以我们只需要转化一下第二个区间,然后和第一个区间加在一起就行了。
我们直接带入上面的(f_{mid} = k_l f_{l - 1} + b_l),然后化简并和第一个区间的式子加在一起,最后得到新的(sumk = sumk_r k_l + sumk_l, quad sumb = sumk_r b_l + sumb_r + sumb_l)
最后
代码
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define LL long long
#define AC 501000
#define ac 2001000
#define p 998244353
#define mo(x) ((x) % p)
#define mul(a, b) (1LL * (a) * (b) % p)//error !!!都要用(a), (b)...啊
#define h(x, y) (mul((x), qpow((y), p - 2)))
int n, m, t, A, B;
int pi[AC];
struct node{
int sumk, sumb, k, b, sump;
}tree[ac];
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
inline void up(int &a, int b) {a += b; if(a < 0) a += p; if(a >= p) a -= p;}
inline int ad(int a, int b) {a += b; if(a < 0) a += p; if(a >= p) a -= p; return a;}
inline int qpow(int x, int have)
{
int rnt = 1;
while(have)
{
if(have & 1) rnt = mul(rnt, x);
x = mul(x, x), have >>= 1;
}
return rnt;
}
void pre()
{
n = read();//对于正解来说没有什么用的输入
n = read(), m = read();
int a = read(), b = read();
t = h(a, b), A = read(), B = read();
for(R i = 1; i <= n; i ++) a = read(), b = read(), pi[i] = h(a, b);
}
node merge(node ll, node rr)
{
node x;
x.k = mul(ll.k, rr.k), x.b = ad(mul(rr.k, ll.b), rr.b);
x.sumk = ad(mul(rr.sumk, ll.k), ll.sumk);
x.sumb = ad(mul(rr.sumk, ll.b), ad(rr.sumb, ll.sumb));
x.sump = ad(ll.sump, rr.sump);
return x;
}
#define update(x) tree[x] = merge(tree[x << 1], tree[(x << 1) + 1]);
node make(int now)
{
node x;
x.k = ad(pi[now], mul(t, 1 - pi[now]));
x.b = x.sumk = x.sumb = x.sump = pi[now];
return x;
}
void build(int x, int ll, int rr)
{
if(ll == rr) {tree[x] = make(ll); return ;}
int mid = (ll + rr) >> 1;
build(x << 1, ll, mid), build((x << 1) + 1, mid + 1, rr);
update(x);
}
void change(int x, int l, int r, int w)
{
if(l == r) {tree[x] = make(w); return ;}
int mid = (l + r) >> 1;
if(w <= mid) change(x << 1, l, mid, w);
else change((x << 1) + 1, mid + 1, r, w);
update(x);
}
node find(int x, int l, int r, int ll, int rr)
{
if(l == ll && r == rr) return tree[x];
int mid = (l + r) >> 1;
if(rr <= mid) return find(x << 1, l, mid, ll, rr);
else if(ll > mid) return find((x << 1) + 1, mid + 1, r, ll, rr);
else
{
node a = find(x << 1, l, mid, ll, mid);
node b = find((x << 1) + 1, mid + 1, r, mid + 1, rr);
return merge(a, b);
}
}
void work()
{
for(R i = 1; i <= m; i ++)
{
int o = read();
if(!o)
{
int x = read(), a = read(), b = read();
pi[x] = h(a, b), change(1, 1, n, x);
}
else
{
int ll = read(), rr = read();
node x = find(1, 1, n, ll, rr);
//int ans = mul(ad(mul(x.sumk, pi[ll]), ad(x.sumb, pi[ll])), B);
int ans = mul(x.sumb, B);
up(ans, mul(A, x.sump));
printf("%d
", ans);
}
}
}
int main()
{
freopen("in.in", "r", stdin);
pre();
build(1, 1, n);
work();
fclose(stdin);
return 0;
}