zoukankan      html  css  js  c++  java
  • 数据结构与算法——认识O(NlogN)的排序(1)

    归并排序

    1. 整体就是一个简单递归,左边排好序、右边排好序、让其整体有序

    2. 让其整体有序的过程里用了外排序方法

    3. 利用master公式来求解时间复杂度

    4. 归并排序的实质

    时间复杂度0(N*logN),额外空间复杂度0(N)

    JAVA

    import java.util.Arrays;
    
    public class MergeSort {
    
    	public static void mergeSort(int[] arr) {
    		if (arr == null || arr.length < 2) {
    			return;
    		}
    		process(arr, 0, arr.length - 1);
    	}
    
    	public static void process(int[] arr, int l, int r) {
    		if (l == r) {
    			return;
    		}
    		int mid = l + ((r - l) >> 1);
    		process(arr, l, mid);
    		process(arr, mid + 1, r);
    		merge(arr, l, mid, r);
    	}
    
    	public static void merge(int[] arr, int l, int m, int r) {
    		int[] help = new int[r - l + 1];
    		int i = 0;
    		int p1 = l;
    		int p2 = m + 1;
    		while (p1 <= m && p2 <= r) {
    			help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
    		}
    		while (p1 <= m) {
    			help[i++] = arr[p1++];
    		}
    		while (p2 <= r) {
    			help[i++] = arr[p2++];
    		}
    		for (i = 0; i < help.length; i++) {
    			arr[l + i] = help[i];
    		}
    	}
    }
    

    C++

    template <typename T> //向量归并排序
    void Vector<T>::mergeSort ( Rank lo, Rank hi ) { //0 <= lo < hi <= size
       if ( hi - lo < 2 ) return; //单元素区间自然有序,否则...
       int mi = ( lo + hi ) / 2; //以中点为界
       mergeSort ( lo, mi ); mergeSort ( mi, hi ); //分别排序
       merge ( lo, mi, hi ); //归并
    }
    
    template <typename T> //有序向量(区间)的归并
    //各自有序的子向量[lo, mi)和[mi, hi)
    void Vector<T>::merge ( Rank lo, Rank mi, Rank hi ) { 
       
       T* A = _elem + lo; //合并后的向量A[0, hi - lo) = _elem[lo, hi)
       int lb = mi - lo; T* B = new T[lb]; //前子向量B[0, lb) = _elem[lo, mi)
       
       for ( Rank i = 0; i < lb; i++ ) 
           B[i] = A[i]; //复制前子向量
       int lc = hi - mi; T* C = _elem + mi; //后子向量C[0, lc) = _elem[mi, hi)
       
        //归并:反复从B和C首元素中取出更小者
       for ( Rank i = 0, j = 0, k = 0; j < lb; ) 
          A[i++] = ( lc <= k || B[j] <= C[k] ) ? B[j++] : C[k++]; //将其归入A中
       delete [] B; //释放临时空间B
    }//归并后得到完整的有序向量[lo, hi]
    

    归并排序的扩展

    小和问题和逆序对问题

    小和问题

    在一个数组中,每一个数左边比当前数小的数累加起来,叫做这个数组 的小和。求一个数组的小和。

    例子:[1,3,4,2,5] 1左边比1小的数,没有;3左边比3小的数,1; 4左 边比4小的数,1、3; 2左边比2小的数,1; 5左边比5小的数,1、3、4、 2;所以小和为1+1+3+1+1+3+4+2=16

    1,3,4,2,5 求取右边有多少比该数大

    4个1, 2个3,1个4, 1个2

    public class SmallSum {
    
    	public static int smallSum(int[] arr) {
    		if (arr == null || arr.length < 2) {
    			return 0;
    		}
    		return mergeSort(arr, 0, arr.length - 1);
    	}
    
    	public static int mergeSort(int[] arr, int l, int r) {
    		if (l == r) {
    			return 0;
    		}
    		int mid = l + ((r - l) >> 1);
    		return mergeSort(arr, l, mid) 
                 + mergeSort(arr, mid + 1, r) 
                 + merge(arr, l, mid, r);
    	}
    
    	public static int merge(int[] arr, int l, int m, int r) {
    		int[] help = new int[r - l + 1];
    		int i = 0;
    		int p1 = l;
    		int p2 = m + 1;
    		int res = 0;
    		while (p1 <= m && p2 <= r) {
    			res += arr[p1] < arr[p2] ? (r - p2 + 1) * arr[p1] : 0;
    			help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
    		}
    		while (p1 <= m) {
    			help[i++] = arr[p1++];
    		}
    		while (p2 <= r) {
    			help[i++] = arr[p2++];
    		}
    		for (i = 0; i < help.length; i++) {
    			arr[l + i] = help[i];
    		}
    		return res;
    	}
    }
    

    逆序对问题

    在一个数组中,左边的数如果比右边的数大,则折两个数 构成一个逆序对,请打印所有逆序对。

    		public static void reverseOrder(int[] arr) {
                if (arr==null || arr.length<2) {
                    return ;
                }
                 mergeSort(arr,0,arr.length-1);
            }
            public static int mergeSort(int[] arr, int l, int r) {        
                if (l == r) {
                    return 0;
                }
                int mid = (l+r)/2;
                int k = mergeSort(arr, l, mid)
                    	+mergeSort(arr, mid+1, r)+merge(arr,l,mid,r);
                System.out.println("merge总逆序数:"+k);
                return k;
            }
    
            public static int merge(int[] arr, int l, int mid, int r) {
                int merge_res=0;
                //help的长度不是一个大的N 而是每次分治的长度
                int[] help = new int[r - l + 1];   
                int i=0;
                int p1 = l;
                int p2 = mid+1;
                
                while(p1 <= mid && p2 <= r) {
                    if ( arr[p2] < arr[p1] ) {    //说明 p2 此时比p1中剩下的元素都小    
                        merge_res += (mid-p1+1);  //核心 
                    }
                    help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++] ;
                }
                while(p1<=mid) {
                    help[i++] = arr[p1++];
                }
                while (p2<=r) {
                    help[i++] = arr[p2++];
                    
                }
                //拷贝到 arr数组
                for (int j = 0; j < help.length; j++) {
                    arr[l+j] = help[j]; 
                }
                System.out.println("merge_res:"+merge_res);
                return merge_res;
            }
    

    1. 堆结构就是用数组实现的完全二叉树结构
    2. 完全二叉树中如果每棵子树的最大值都在顶部就是大根堆
    3. 完全二叉树中如果每棵子树的最小值都在顶部就是小根堆
    4. 堆结构的heapInsert与heapify操作
    5. 堆结构的增大和减少
    6. 优先级队列结构,就是堆结构
    	// 某个数现在处在index位置,往上继续移动
    	public static void heapInsert(int[] arr, int index) {
    		while (arr[index] > arr[(index - 1) / 2]) {
    			swap(arr, index, (index - 1) / 2);
    			index = (index - 1) / 2;
    		}
    	}
    
    	// 某个数在index位置,能否往下移动
    	public static void heapify(int[] arr, int index, int heapSize) {
    		int left = index * 2 + 1; // 左孩子的下标
    		while (left < heapSize) { // 下方还有孩子的时候
    			// 两个孩子中,谁的值大,把下标给largest
    			int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
    			// 父和较大的孩子之间,谁的值大,把下标给largest
    			largest = arr[largest] > arr[index] ? largest : index;
    			if (largest == index) {
    				break;
    			}
    			swap(arr, largest, index);
    			index = largest;
    			left = index * 2 + 1;
    		}
    	}
    
    	public static void swap(int[] arr, int i, int j) {
    		int tmp = arr[i];
    		arr[i] = arr[j];
    		arr[j] = tmp;
    	}
    

    堆排序

    1. 先让整个数组都变成大根堆结构,建立堆的过程:

    2. 从上到下的方法,时间复杂度为0(N*logN)

    3. 从下到上的方法,时间复杂度为0(N)

    4. 把堆的最大值和堆末尾的值交换,然后减少堆的大小之后,再去调整堆,一直周而复始,时间复杂度为0(N*log N)

    5. 堆的大小减小成0之后,排序完成

    public static void heapSort(int[] arr) {
    		if (arr == null || arr.length < 2) {
    			return;
    		}
    		for (int i = 0; i < arr.length; i++) {
    			heapInsert(arr, i); //O(logN)
    		}
    		int size = arr.length;
    		swap(arr, 0, --size);
    		while (size > 0) {   //O(N)
    			heapify(arr, 0, size);  //O(logN)
    			swap(arr, 0, --size);
    		}
    	}
    

    C++实现堆

    完全二叉堆

    #define  Parent(i)   ( ( ( i ) - 1 ) >> 1 ) //PQ[i]的父节点(floor((i-1)/2),i无论正负)
    #define  LChild(i)       ( 1 + ( ( i ) << 1 ) ) //PQ[i]的左孩子
    #define  RChild(i)       ( ( 1 + ( i ) ) << 1 ) //PQ[i]的右孩子
    #define  InHeap(n, i)   ( ( ( -1 ) < ( i ) ) && ( ( i ) < ( n ) ) ) //判断PQ[i]是否合法
    #define  LChildValid(n, i) InHeap( n, LChild( i ) ) //判断PQ[i]是否有一个(左)孩子
    #define  RChildValid(n, i) InHeap( n, RChild( i ) ) //判断PQ[i]是否有两个孩子
    #define  Bigger(PQ, i, j)  ( lt( PQ[i], PQ[j] ) ? j : i ) //取大者(等时前者优先)
    #define  ProperParent(PQ, n, i) /*父子(至多)三者中的大者*/ 
           ( RChildValid(n, i) ? Bigger( PQ, Bigger( PQ, i, LChild(i) ), RChild(i) ) : 
           ( LChildValid(n, i) ? Bigger( PQ, i, LChild(i) ) : i ) 
           ) //相等时父节点优先,如此可避免不必要的交换
    

    PQ_ComplHeap模拟类

    Vector/Vector.h

    typedef int Rank; //秩
    #define DEFAULT_CAPACITY  3 //默认的初始容量(实际应用中可设置为更大)
    
    template <typename T> class Vector { //向量模板类
    protected:
       Rank _size; int _capacity;  T* _elem; //规模、容量、数据区
       void copyFrom ( T const* A, Rank lo, Rank hi ); //复制数组区间A[lo, hi)
       void expand(); //空间不足时扩容
       void shrink(); //装填因子过小时压缩
       bool bubble ( Rank lo, Rank hi ); //扫描交换
       void bubbleSort ( Rank lo, Rank hi ); //起泡排序算法
       Rank max ( Rank lo, Rank hi ); //选取最大元素
       void selectionSort ( Rank lo, Rank hi ); //选择排序算法
       void merge ( Rank lo, Rank mi, Rank hi ); //归并算法
       void mergeSort ( Rank lo, Rank hi ); //归并排序算法
       void heapSort ( Rank lo, Rank hi ); //堆排序(稍后结合完全堆讲解)
       Rank partition ( Rank lo, Rank hi ); //轴点构造算法
       void quickSort ( Rank lo, Rank hi ); //快速排序算法
       void shellSort ( Rank lo, Rank hi ); //希尔排序算法
    public:
    // 构造函数
       //容量为c、规模为s、所有元素初始为v
       Vector ( int c = DEFAULT_CAPACITY, int s = 0, T v = 0 ) 
       { _elem = new T[_capacity = c]; for ( _size = 0; _size < s; _elem[_size++] = v ); } //s<=c
       Vector ( T const* A, Rank n ) { copyFrom ( A, 0, n ); } //数组整体复制
       Vector ( T const* A, Rank lo, Rank hi ) { copyFrom ( A, lo, hi ); } //区间
       Vector ( Vector<T> const& V ) { copyFrom ( V._elem, 0, V._size ); } //向量整体复制
       //区间
       Vector ( Vector<T> const& V, Rank lo, Rank hi ) { copyFrom ( V._elem, lo, hi ); } 
    // 析构函数
       ~Vector() { delete [] _elem; } //释放内部空间
    // 只读访问接口
       Rank size() const { return _size; } //规模
       bool empty() const { return !_size; } //判空
       Rank find ( T const& e ) const { return find ( e, 0, _size ); } //无序向量整体查找
       Rank find ( T const& e, Rank lo, Rank hi ) const; //无序向量区间查找
       Rank search ( T const& e ) const //有序向量整体查找
       { return ( 0 >= _size ) ? -1 : search ( e, 0, _size ); }
       Rank search ( T const& e, Rank lo, Rank hi ) const; //有序向量区间查找
    // 可写访问接口
       T& operator[] ( Rank r ); //重载下标操作符,可以类似于数组形式引用各元素
       const T& operator[] ( Rank r ) const; //仅限于做右值的重载版本
       Vector<T> & operator= ( Vector<T> const& ); //重载赋值操作符,以便直接克隆向量
       T remove ( Rank r ); //删除秩为r的元素
       int remove ( Rank lo, Rank hi ); //删除秩在区间[lo, hi)之内的元素
       Rank insert ( Rank r, T const& e ); //插入元素
       Rank insert ( T const& e ) { return insert ( _size, e ); } //默认作为末元素插入
       void sort ( Rank lo, Rank hi ); //对[lo, hi)排序
       void sort() { sort ( 0, _size ); } //整体排序
       void unsort ( Rank lo, Rank hi ); //对[lo, hi)置乱
       void unsort() { unsort ( 0, _size ); } //整体置乱
       int deduplicate(); //无序去重
       int uniquify(); //有序去重
    // 遍历
       void traverse ( void (* ) ( T& ) ); //遍历(使用函数指针,只读或局部性修改)
       template <typename VST> void traverse ( VST& ); //遍历(使用函数对象,可全局性修改)
    }; //Vector
    

    PQ/PQ.h

    template <typename T> struct PQ { //优先级队列PQ模板类
       virtual void insert ( T ) = 0; //按照比较器确定的优先级次序插入词条
       virtual T getMax() = 0; //取出优先级最高的词条
       virtual T delMax() = 0; //删除优先级最高的词条
    };
    

    完全二叉树接口

    #include "Vector/Vector.h" //借助多重继承机制,基于向量
    #include "PQ/PQ.h" //按照优先级队列ADT实现的
    //完全二叉堆
    template <typename T> struct PQ_ComplHeap : public PQ<T>, public Vector<T> { 
       PQ_ComplHeap() { } //默认构造
       //批量构造
       PQ_ComplHeap ( T* A, Rank n ) { copyFrom ( A, 0, n ); heapify ( _elem, n ); } 
       void insert ( T ); //按照比较器确定的优先级次序,插入词条
       T getMax(); //读取优先级最高的词条
       T delMax(); //删除优先级最高的词条
    }; //PQ_ComplHeap
    template <typename T> void heapify ( T* A, Rank n ); //Floyd建堆算法
    template <typename T> Rank percolateDown ( T* A, Rank n, Rank i ); //下滤
    template <typename T> Rank percolateUp ( T* A, Rank i ); //上滤
    

    getMax

     //取优先级最高的词条
    template <typename T> T PQ_ComplHeap<T>::getMax() {  return _elem[0];  }
    

    元素插入

    算法

    template <typename T> void PQ_ComplHeap<T>::insert ( T e ) { //将词条插入完全二叉堆中
       Vector<T>::insert ( e ); //首先将新词条接至向量末尾
       percolateUp ( _elem, _size - 1 ); //再对该词条实施上滤调整
    

    上滤

    //对向量中的第i个词条实施上滤操作,i < _size
    template <typename T> Rank percolateUp ( T* A, Rank i ) {
       while ( 0 < i ) { //在抵达堆顶之前,反复地
          Rank j = Parent ( i ); //考查[i]之父亲[j]
          if ( lt ( A[i], A[j] ) ) break; //一旦父子顺序,上滤旋即完成;否则
          swap ( A[i], A[j] ); i = j; //父子换位,并继续考查上一层
       } //while
       return i; //返回上滤最终抵达的位置
    }
    

    元素删除

    算法

    template <typename T> T PQ_ComplHeap<T>::delMax() { //删除非空完全二叉堆中优先级最高的词条
       T maxElem = _elem[0]; _elem[0] = _elem[ --_size ]; //摘除堆顶(首词条),代之以末词条
       percolateDown ( _elem, _size, 0 ); //对新堆顶实施下滤
       return maxElem; //返回此前备份的最大词条
    }
    

    下滤

    template <typename T> T PQ_ComplHeap<T>::delMax() { //删除非空完全二叉堆中优先级最高的词条
       T maxElem = _elem[0]; _elem[0] = _elem[ --_size ]; //摘除堆顶(首词条),代之以末词条
       percolateDown ( _elem, _size, 0 ); //对新堆顶实施下滤
       return maxElem; //返回此前备份的最大词条
    }
    

    建堆

    Floyd算法

    template <typename T> void heapify ( T* A, const Rank n ) { //Floyd建堆算法,O(n)时间
       for ( int i = n/2 - 1; 0 <= i; i-- ) //自底而上,依次
          percolateDown ( A, n, i ); //下滤各内部节点
    }
    

    就地排序

    template <typename T> void Vector<T>::heapSort ( Rank lo, Rank hi ) { //0 <= lo < hi <= size
       T* A = _elem + lo; Rank n = hi - lo; heapify( A, n ); //将待排序区间建成一个完全二叉堆,O(n)
       while ( 0 < --n ) //反复地摘除最大元并归入已排序的后缀,直至堆空
          { swap( A[0], A[n] ); percolateDown( A, n, 0 ); } //堆顶与末元素对换,再下滤
    }
    

    堆排序扩展题目

    已知一个几乎有序的数组,几乎有序是指,如果把数组排好顺序的话,每个元素移动的距离可以不超过k,并且k相对于数组来说比较小。请选择一个合适的 排序算法针对这个数据进行排序。

    import java.util.PriorityQueue;
    // 小根堆
    public void sortedArrDistanceLessK(int[] arr, int k) {
            PriorityQueue<Integer> heap = new PriorityQueue<>();
            int index = 0;
            for (; index <= Math.min(arr.length, k); index++) {
                heap.add(arr[index]);
            }
            int i = 0;
            for (; index < arr.length; i++, index++) {
                heap.add(arr[index]);
                arr[i] = heap.poll();
            }
            while (!heap.isEmpty()) {
                arr[i++] = heap.poll();
            }
        }
    

    荷兰国旗问题

    问题一

    给定一个数组arr,和一个数num,请把小于等于num的数放在数组的左边,大于num的数放在数组的右边。要求额外空间复杂度0(1),时间复杂度0(N)

    [i]<=num,[i]和<=区的下一个数交换,<=区右扩,i++

    [i]>num,i++

    问题二(荷兰国旗问题)

    给定一个数组arr,和一个数num,请把小于num的数放在数组的左边,等于num的数放 在数组的中间,大于nu m的数放在数组的右边。要求额外空间复杂度O(1),时间复杂度 0(N)

    [i]<num,[i]和<=区的下一个数交换,<区右扩,i++

    [i]==num,i++

    [i]>num, [i]和>区前一个交换,>区左扩

    public static int[] partition(int[] arr, int l, int r, int p) {
    		int less = l - 1;
    		int more = r + 1;
    		while (l < more) {
    			if (arr[l] < p) {
    				swap(arr, ++less, l++);
    			} else if (arr[l] > p) {
    				swap(arr, --more, l);
    			} else {
    				l++;
    			}
    		}
    		return new int[] { less + 1, more - 1 };
    	}
    

    不改进的快速排序

    1)把数组范围中的最后一个数作为划分值,然后把数组通过荷兰国旗问题分成三个部分:

    ​ 左侧<划分值、中间二二划分值、右侧>划分值

    2)对左侧范围和右侧范围,递归执行

    分析

    1)划分值越靠近两侧,复杂度越高;划分值越靠近中间,复杂度越低

    2)可以轻而易举的举出最差的例子,所以不改进的快速排序时间复杂度为0(N^2)

    随机快速排序(改进的快速排序)

    1)在数组范围中,等概率随机选一个数作为划分值,然后把数组通过荷兰国旗问题

    ​ 分成三个部分:左侧〈划分值、中间二二划分值、右侧〉划分值

    2)对左侧范围和右侧范围,递归执行

    3)时间复杂度为0(N * logN

    import java.util.Arrays;
    
    public class 
        QuickSort {
    
    	public static void QuickSort(int[] arr) {
    		if (arr == null || arr.length < 2) {
    			return;
    		}
    		quickSort(arr, 0, arr.length - 1);
    	}
    
    	public static void quickSort(int[] arr, int l, int r) {
    		if (l < r) {
    			swap(arr, l + (int) (Math.random() * (r - l + 1)), r);
    			int[] p = partition(arr, l, r);
    			quickSort(arr, l, p[0] - 1);
    			quickSort(arr, p[1] + 1, r);
    		}
    	}
    
        //荷兰国旗问题
    	public static int[] partition(int[] arr, int l, int r) {
    		int less = l - 1;
    		int more = r;
    		while (l < more) {
    			if (arr[l] < arr[r]) {
    				swap(arr, ++less, l++);
    			} else if (arr[l] > arr[r]) {
    				swap(arr, --more, l);
    			} else {
    				l++;
    			}
    		}
    		swap(arr, more, r);
    		return new int[] { less + 1, more };
    	}
    
    	public static void swap(int[] arr, int i, int j) {
    		int tmp = arr[i];
    		arr[i] = arr[j];
    		arr[j] = tmp;
    	}
    }
    

    C++实现快速排序

    快速排序算法

    template <typename T> //向量快速排序
    void Vector<T>::quickSort ( Rank lo, Rank hi ) { //0 <= lo < hi <= size
       if ( hi - lo < 2 ) return; //单元素区间自然有序,否则...
       Rank mi = partition ( lo, hi ); //在[lo, hi)内构造轴点
       quickSort ( lo, mi ); //对前缀递归排序
       quickSort ( mi + 1, hi ); //对后缀递归排序
    }
    

    快速分化算法

    template <typename T> //向量快速排序
    void Vector<T>::quickSort ( Rank lo, Rank hi ) { //0 <= lo < hi <= size
       if ( hi - lo < 2 ) return; //单元素区间自然有序,否则...
       Rank mi = partition ( lo, hi ); //在[lo, hi)内构造轴点
       quickSort ( lo, mi ); //对前缀递归排序
       quickSort ( mi + 1, hi ); //对后缀递归排序
    }
    

    应对退化

    template <typename T> //轴点构造算法:通过调整元素位置构造区间[lo, hi)的轴点,并返回其秩
    //版本B:可优化处理多个关键码雷同的退化情况
    Rank Vector<T>::partition ( Rank lo, Rank hi ) { 
       swap ( _elem[lo], _elem[ lo + rand() % ( hi - lo ) ] ); //任选一个元素与首元素交换
       hi--; T pivot = _elem[lo]; //以首元素为候选轴点——经以上交换,等效于随机选取
       while ( lo < hi ) { //从向量的两端交替地向中间扫描
          while ( lo < hi )
             if ( pivot < _elem[hi] ) //在大于pivot的前提下
                hi--; //向左拓展右端子向量
             else //直至遇到不大于pivot者
                { _elem[lo++] = _elem[hi]; break; } //将其归入左端子向量
          while ( lo < hi )
             if ( _elem[lo] < pivot ) //在小于pivot的前提下
                lo++; //向右拓展左端子向量
             else //直至遇到不小于pivot者
                { _elem[hi--] = _elem[lo]; break; } //将其归入右端子向量
       } //assert: lo == hi
       _elem[lo] = pivot; //将备份的轴点记录置于前、后子向量之间
       return lo; //返回轴点的秩
    }
    
  • 相关阅读:
    poj1631 LIS 裸题
    UESTC 电子科大专题训练 DP-N
    UESTC 电子科大专题训练 DP-M
    UESTC 电子科大专题训练 DP-D
    Codeforces Round #424 D
    Codeforces Round #424 C
    Codeforces Round #424 B
    Codeforces Round #424 A
    hiho一下159
    hiho一下158(hihocoder 1318)
  • 原文地址:https://www.cnblogs.com/wwj99/p/12163834.html
Copyright © 2011-2022 走看看