zoukankan      html  css  js  c++  java
  • 简单的数学题

    原式

    \[\sum_{i=1}^{n}\sum_{j=1}^n{ijgcd(i,j)} \]

    枚举 \(gcd\) 得到

    \[\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}ijd^3[gcd(i,j)=1] \]

    \(d^3\) 提到前面

    \[\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}ij[gcd(i,j)=1] \]

    设函数

    \[f(n)=\sum_{i=1}^{n}\sum_{j=1}^nij[gcd(i,j)=1] \]

    \[s(n)=\sum_{i=1}^{n}\sum_{j=1}^nij \]

    则原式等于

    \[\sum_{d=1}^nd^3f(\lfloor\frac{n}{d}\rfloor) \]

    可以看出是数论分块,其中立方部分和为

    \[\sum_{i=1}^{n}i^3=(\sum_{i=1}^ni)^2=[\frac{n(n+1)}{2}]^2 \]

    求出前缀做差即可


    考虑快速求 \(f(n)\),非常显然

    \[s(n)=\sum_{i=1}^{n}\sum_{j=1}^nij=[\frac{n(n+1)}{2}]^2 \]

    而对于 \(s(n)\) 同样枚举 \(gcd\) 可得

    \[s(n)=\sum_{i=1}^{n}\sum_{j=1}^nij=\sum_{t=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{t}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{t}\rfloor}t^2ij[gcd(i,j)=1] \]

    \(f(n)\) 替换上式得

    \[s(n)=\sum_{t=1}^{n}t^2f(\lfloor\frac{n}{t}\rfloor)=f(n)+\sum_{t>1}t^2f(\lfloor\frac{n}{t}\rfloor) \]

    所以有

    \[f(n)=s(n)-\sum_{t>1}t^2f(\lfloor\frac{n}{t}\rfloor)=[\frac{n(n+1)}{2}]^2-\sum_{t>1}t^2f(\lfloor\frac{n}{t}\rfloor) \]

    到了此刻已经非常容易求了,数论分块即可,其中

    \[\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6} \]

    做法同立方和,前缀做差


    考虑预处理 \(f(n)\) 部分

    \[f(n)=\sum_{i=1}^{n}\sum_{j=1}^nij[gcd(i,j)=1]=f(n-1)+2\sum_{i=1}^{n}in[gcd(i,n)=1] \]

    那么需要快速求得

    \[\sum_{i=1}^ni[gcd(i,n)=1] \]

    发现这就是与 \(n\) 互质的数的和,就等于

    \[n\frac{\varphi(n)}{2} \]

    详细证明参考链接

    带回原式得到

    \[f(n)=f(n-1)+n^2\varphi(n) \]

    线性筛预处理即可


    Code:

    #pragma GCC optimize(2)
    #include<stdio.h>
    #include<string.h>
    #include<cassert>
    #define Mod p
    #define LL long long
    #define N 5000000
    
    template<class T>
    inline void read(T &x){
        x=0;char c=getchar();T flag=1;
        while(c<'0'||c>'9'){if(c=='-')flag=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
        x*=flag;
    }
    
    LL n,p,inv,inv6;
    int cnt,P[N];
    bool mark[N];
    LL phi[N],f[N],F[N];
    
    inline LL qpow(LL a,LL b){
        if(!b) return 1LL;
        if(b==1LL) return a;
        LL t=qpow(a,b>>1LL);
        t=t*t%Mod;
        if(b&1LL) t=t*a%Mod;
        assert(t>=0);
        return t;
    }
    inline LL pow2(LL x){//平方前缀和
        return ((inv6*x)%Mod)*(((x+1LL)%Mod)*((2LL*x+1LL)%Mod)%Mod)%Mod;
    }
    inline LL pow2(LL l,LL r){平方区间和
        return ((pow2(r)-pow2(l-1LL))%Mod+Mod)%Mod;
    }
    inline LL pow3(LL x){立方前缀和
        return qpow(((x%Mod)*(x+1LL)%Mod)*inv%Mod,2LL);
    }
    inline LL pow3(LL l,LL r){立方区间和
        return ((pow3(r)-pow3(l-1LL))%Mod+Mod)%Mod;
    }
    inline void Prework(int x){//线性筛预处理 f(n)
        cnt=0;
        f[1]=phi[1]=1;
        for(int i=2;i<=x;++i){
            if(!mark[i]){
                P[cnt++]=i;
                phi[i]=i-1;
            }
            for(int j=0;j<cnt&&i*P[j]<=x;++j){
                mark[i*P[j]]=1;
                if(!(i%P[j])){
                    phi[i*P[j]]=phi[i]*P[j];
                    break;
                }else phi[i*P[j]]=phi[i]*(P[j]-1);
            }
            LL ret=qpow(i,2LL)*phi[i]%Mod;
            f[i]=(f[i-1]+ret)%Mod;
        }
    }
    inline LL solve(LL x){//杜教筛
        if(x<=N-3) return f[x];
        if(~F[n/x]) return F[n/x];
        F[n/x]=qpow(((x%Mod)*((x+1)%Mod)%Mod)*inv%Mod,2);
        for(LL l=2,r;l<=x;l=r+1){
            r=x/(x/l);
            F[n/x]=((F[n/x]-(pow2(l,r)*solve(x/l)%Mod))%Mod+Mod)%Mod;
        }
        return F[n/x];
    }
    int main(){
        memset(F,-1,sizeof(F));
        read(p),read(n);
        inv=qpow(2LL,p-2);//2的逆元
        inv6=qpow(6LL,p-2);//6的逆元
        Prework(N-3);
        LL ans=0;
        for(LL l=1,r;l<=n;l=r+1){//原式
            r=n/(n/l);
            ans=(ans+(pow3(l,r)*solve(n/l))%Mod)%Mod;
        }
        printf("%lld",ans);
    }
    /*
    998244353 2
    */
    
  • 相关阅读:
    NOI2019 I 君的商店
    CF1326F
    APIO2016 划艇
    LeetCode-Remove Nth Node From End of List
    LeetCode-Remove Element
    LeetCode-Remove Duplicates from Sorted List II
    LeetCode-Remove Duplicates from Sorted List
    LeetCode-Unique Paths II
    LeetCode-Unique Paths
    LeetCode-Remove Duplicates from Sorted Array II
  • 原文地址:https://www.cnblogs.com/wwlwQWQ/p/11622943.html
Copyright © 2011-2022 走看看