zoukankan      html  css  js  c++  java
  • R生存分析AFT

     γ = 1/scale =1/0.902
     α = exp(−(Intercept)γ)=exp(-(7.111)*γ)

    > library(survival)
    > myfit=survreg(Surv(futime, fustat)~1 , ovarian, dist="weibull",scale=0)
    > summary(myfit)
    
    Call:
    survreg(formula = Surv(futime, fustat) ~ 1, data = ovarian, dist = "weibull", 
        scale = 0)
                 Value Std. Error      z         p
    (Intercept)  7.111      0.293 24.292 2.36e-130
    Log(scale)  -0.103      0.254 -0.405  6.86e-01
    
    Scale= 0.902 
    
    Weibull distribution
    Loglik(model)= -98   Loglik(intercept only)= -98
    Number of Newton-Raphson Iterations: 5 
    n= 26 
    

    画生存函数图

    d<- seq(0, 2000, length.out=10000) 
    
    h<-1-pweibull(d,shape=1/0.902,scale=exp(7.111))
    
    df<-data.frame(t=d,s=h)
    
    library(ggplot2)
    
    ggplot(df,aes(x=t,y=s))+ 
      geom_line(colour="green")+ 
      ggtitle("s(t) 
     生存函数")
    

     

    1. Surv

    Description

    创建一个生存对象,通常用作模型公式中的响应变量。 参数匹配是此功能的特殊功能,请参阅下面的详细信息。

    Surv(time, time2, event,
        type=c('right', 'left', 'interval', 'counting', 'interval2', 'mstate'),
        origin=0)
    is.Surv(x)

    Arguments
    time
    对于右删失数据,这是一个跟踪时间。对于区间数据,第一个参数是区间的开始时间。 
    event 
    状态指示,通常,0=活着,1=死亡。其他选择是TRUE/FALSE (TRUE = 死亡) or 1/2 (2=死亡)。对于区间删失数据,状态指示,0=右删失, 1=事件时间, 2=左删失, 3=区间删失.
    右删失(Right Censoring):只知道实际寿命大于某数;
    左删失(Left Censoring):只知道实际寿命小于某数;
    区间删失(Interval Censoring):只知道实际寿命在一个时间区间内。
    time2 
    区间删失区间的结束时间或仅对过程数据进行计数。
    type 
    指定删失类型。 "right", "left", "counting", "interval", "interval2" or "mstate".
    如果event变量是一个因子,假定type="mstate"。如果没有指定参数time2,type="right";如果指定参数time2,type="counting" 

    Surv使用示例

    > str(lung)
    'data.frame':	228 obs. of  10 variables:
     $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...
     $ time     : num  306 455 1010 210 883 ...
     $ status   : num  2 2 1 2 2 1 2 2 2 2 ...
     $ age      : num  74 68 56 57 60 74 68 71 53 61 ...
     $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...
     $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...
     $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...
     $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...
     $ meal.cal : num  1175 1225 NA 1150 NA ...
     $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...
    > with(lung, Surv(time, status))
      [1]  306   455  1010+  210   883  1022+  310   361   218 
     [10]  166   170   654   728    71   567   144   613   707 
     [19]   61    88   301    81   624   371   394   520   574 
     [28]  118   390    12   473    26   533   107    53   122 
     [37]  814   965+   93   731   460   153   433   145   583 
     [46]   95   303   519   643   765   735   189    53   246 
     [55]  689    65     5   132   687   345   444   223   175 
     [64]   60   163    65   208   821+  428   230   840+  305 
     [73]   11   132   226   426   705   363    11   176   791 
     [82]   95   196+  167   806+  284   641   147   740+  163 
     [91]  655   239    88   245   588+   30   179   310   477 
    [100]  166   559+  450   364   107   177   156   529+   11 
    [109]  429   351    15   181   283   201   524    13   212 
    [118]  524   288   363   442   199   550    54   558   207 
    [127]   92    60   551+  543+  293   202   353   511+  267 
    [136]  511+  371   387   457   337   201   404+  222    62 
    [145]  458+  356+  353   163    31   340   229   444+  315+
    [154]  182   156   329   364+  291   179   376+  384+  268 
    [163]  292+  142   413+  266+  194   320   181   285   301+
    [172]  348   197   382+  303+  296+  180   186   145   269+
    [181]  300+  284+  350   272+  292+  332+  285   259+  110 
    [190]  286   270    81   131   225+  269   225+  243+  279+
    [199]  276+  135    79    59   240+  202+  235+  105   224+
    [208]  239   237+  173+  252+  221+  185+   92+   13   222+
    [217]  192+  183   211+  175+  197+  203+  116   188+  191+
    [226]  105+  174+  177+
    
    
    > str(heart)
    'data.frame':	172 obs. of  8 variables:
     $ start     : num  0 0 0 1 0 36 0 0 0 51 ...
     $ stop      : num  50 6 1 16 36 39 18 3 51 675 ...
     $ event     : num  1 1 0 1 0 1 1 1 0 1 ...
     $ age       : num  -17.16 3.84 6.3 6.3 -7.74 ...
     $ year      : num  0.123 0.255 0.266 0.266 0.49 ...
     $ surgery   : num  0 0 0 0 0 0 0 0 0 0 ...
     $ transplant: Factor w/ 2 levels "0","1": 1 1 1 2 1 2 1 1 1 2 ...
     $ id        : num  1 2 3 3 4 4 5 6 7 7 ...
    > Surv(heart$start, heart$stop, heart$event)
      [1] (  0.0,  50.0]  (  0.0,   6.0]  (  0.0,   1.0+]
      [4] (  1.0,  16.0]  (  0.0,  36.0+] ( 36.0,  39.0] 
      [7] (  0.0,  18.0]  (  0.0,   3.0]  (  0.0,  51.0+]
     [10] ( 51.0, 675.0]  (  0.0,  40.0]  (  0.0,  85.0] 
     [13] (  0.0,  12.0+] ( 12.0,  58.0]  (  0.0,  26.0+]
     [16] ( 26.0, 153.0]  (  0.0,   8.0]  (  0.0,  17.0+]
     [19] ( 17.0,  81.0]  (  0.0,  37.0+] ( 37.0,1387.0] 
     [22] (  0.0,   1.0]  (  0.0,  28.0+] ( 28.0, 308.0] 
     [25] (  0.0,  36.0]  (  0.0,  20.0+] ( 20.0,  43.0] 
     [28] (  0.0,  37.0]  (  0.0,  18.0+] ( 18.0,  28.0] 
     [31] (  0.0,   8.0+] (  8.0,1032.0]  (  0.0,  12.0+]
     [34] ( 12.0,  51.0]  (  0.0,   3.0+] (  3.0, 733.0] 
     [37] (  0.0,  83.0+] ( 83.0, 219.0]  (  0.0,  25.0+]
     [40] ( 25.0,1800.0+] (  0.0,1401.0+] (  0.0, 263.0] 
     [43] (  0.0,  71.0+] ( 71.0,  72.0]  (  0.0,  35.0] 
     [46] (  0.0,  16.0+] ( 16.0, 852.0]  (  0.0,  16.0] 
     [49] (  0.0,  17.0+] ( 17.0,  77.0]  (  0.0,  51.0+]
     [52] ( 51.0,1587.0+] (  0.0,  23.0+] ( 23.0,1572.0+]
     [55] (  0.0,  12.0]  (  0.0,  46.0+] ( 46.0, 100.0] 
     [58] (  0.0,  19.0+] ( 19.0,  66.0]  (  0.0,   4.5+]
     [61] (  4.5,   5.0]  (  0.0,   2.0+] (  2.0,  53.0] 
     [64] (  0.0,  41.0+] ( 41.0,1408.0+] (  0.0,  58.0+]
     [67] ( 58.0,1322.0+] (  0.0,   3.0]  (  0.0,   2.0] 
     [70] (  0.0,  40.0]  (  0.0,   1.0+] (  1.0,  45.0] 
     [73] (  0.0,   2.0+] (  2.0, 996.0]  (  0.0,  21.0+]
     [76] ( 21.0,  72.0]  (  0.0,   9.0]  (  0.0,  36.0+]
     [79] ( 36.0,1142.0+] (  0.0,  83.0+] ( 83.0, 980.0] 
     [82] (  0.0,  32.0+] ( 32.0, 285.0]  (  0.0, 102.0] 
     [85] (  0.0,  41.0+] ( 41.0, 188.0]  (  0.0,   3.0] 
     [88] (  0.0,  10.0+] ( 10.0,  61.0]  (  0.0,  67.0+]
     [91] ( 67.0, 942.0+] (  0.0, 149.0]  (  0.0,  21.0+]
     [94] ( 21.0, 343.0]  (  0.0,  78.0+] ( 78.0, 916.0+]
     [97] (  0.0,   3.0+] (  3.0,  68.0]  (  0.0,   2.0] 
    [100] (  0.0,  69.0]  (  0.0,  27.0+] ( 27.0, 842.0+]
    [103] (  0.0,  33.0+] ( 33.0, 584.0]  (  0.0,  12.0+]
    [106] ( 12.0,  78.0]  (  0.0,  32.0]  (  0.0,  57.0+]
    [109] ( 57.0, 285.0]  (  0.0,   3.0+] (  3.0,  68.0] 
    [112] (  0.0,  10.0+] ( 10.0, 670.0+] (  0.0,   5.0+]
    [115] (  5.0,  30.0]  (  0.0,  31.0+] ( 31.0, 620.0+]
    [118] (  0.0,   4.0+] (  4.0, 596.0+] (  0.0,  27.0+]
    [121] ( 27.0,  90.0]  (  0.0,   5.0+] (  5.0,  17.0] 
    [124] (  0.0,   2.0]  (  0.0,  46.0+] ( 46.0, 545.0+]
    [127] (  0.0,  21.0]  (  0.0, 210.0+] (210.0, 515.0+]
    [130] (  0.0,  67.0+] ( 67.0,  96.0]  (  0.0,  26.0+]
    [133] ( 26.0, 482.0+] (  0.0,   6.0+] (  6.0, 445.0+]
    [136] (  0.0, 428.0+] (  0.0,  32.0+] ( 32.0,  80.0] 
    [139] (  0.0,  37.0+] ( 37.0, 334.0]  (  0.0,   5.0] 
    [142] (  0.0,   8.0+] (  8.0, 397.0+] (  0.0,  60.0+]
    [145] ( 60.0, 110.0]  (  0.0,  31.0+] ( 31.0, 370.0+]
    [148] (  0.0, 139.0+] (139.0, 207.0]  (  0.0, 160.0+]
    [151] (160.0, 186.0]  (  0.0, 340.0]  (  0.0, 310.0+]
    [154] (310.0, 340.0+] (  0.0,  28.0+] ( 28.0, 265.0+]
    [157] (  0.0,   4.0+] (  4.0, 165.0]  (  0.0,   2.0+]
    [160] (  2.0,  16.0]  (  0.0,  13.0+] ( 13.0, 180.0+]
    [163] (  0.0,  21.0+] ( 21.0, 131.0+] (  0.0,  96.0+]
    [166] ( 96.0, 109.0+] (  0.0,  21.0]  (  0.0,  38.0+]
    [169] ( 38.0,  39.0+] (  0.0,  31.0+] (  0.0,  11.0+]
    [172] (  0.0,   6.0] 
    

    2.survreg

    拟合参数生存回归模型。 这些是用于时间变量的任意变换的位置尺度模型; 最常见的情况使用对数变换,建立加速失效时间模型。

    survreg(formula, data, weights, subset,
            na.action, dist="weibull", init=NULL, scale=0,
            control,parms=NULL,model=FALSE, x=FALSE,
            y=TRUE, robust=FALSE, score=FALSE, ...)
      
    dist
    y变量的假设分布。"weibull", "exponential", "gaussian", "logistic","lognormal" and "loglogistic"。

    scale 
    可选的固定值。如果设置<=0,scale将被估计

    #   survreg's scale  =    1/(rweibull shape)
    #   survreg's intercept = log(rweibull scale) 
    #   survreg结果中输出的scale与“rweibull scale”不同

    control 
    控制值列表,参考survreg.control() 

    survreg.control
    survreg.control(maxiter=30, rel.tolerance=1e-09,
    toler.chol=1e-10, iter.max, debug=0, outer.max=10)

    maxiter 
    最大迭代次数
    rel.tolerance 
    “相对容忍度”来声明收敛
    toler.chol 
    Tolerance to declare Cholesky decomposition singular
    iter.max 
    与maxiter相同
    debug 
    打印调试信息
    outer.max 
    用于选择惩罚参数的外部迭代的最大数目

    convergence tolerance

    /x(k+1)/=/x(k)/*Tr+Ta
    其中:
    k 迭代次数;
    x(k+1) x的k次迭代计算值;
    x(k) x的k次迭代初始值;
    Tr 相对误差
    Ta绝对误差
    // 表示绝对值
    因此,从上述公式我们可以得到一个重要结论:设定计算迭代误差的时候,要全面权衡物理量的绝对值大小,同时要衡量收敛迭代值的相对误差,这样才能正确满意的设定自己需要的计算误差!
    不能简单的以为绝对误差和相对误差越小越好,也要杜绝tolerance设定时的随意性(按照公式进行合理的设定是一个优秀的过程工程师的基本素质)

    survreg使用示例

    > library(survival)
    > str(ovarian)
    'data.frame':	26 obs. of  6 variables:
     $ futime  : num  59 115 156 421 431 448 464 475 477 563 ...
     $ fustat  : num  1 1 1 0 1 0 1 1 0 1 ...
     $ age     : num  72.3 74.5 66.5 53.4 50.3 ...
     $ resid.ds: num  2 2 2 2 2 1 2 2 2 1 ...
     $ rx      : num  1 1 1 2 1 1 2 2 1 2 ...
     $ ecog.ps : num  1 1 2 1 1 2 2 2 1 2 ...
     
    > # 拟合指数模型,以下2个模型是一样的
    > survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist='weibull',
    +         scale=1)
    Call:
    survreg(formula = Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, 
        dist = "weibull", scale = 1)
    
    Coefficients:
    (Intercept)     ecog.ps          rx 
      6.9618376  -0.4331347   0.5815027 
    
    Scale fixed at 1 # 注意这里
    
    Loglik(model)= -97.2   Loglik(intercept only)= -98
    	Chisq= 1.67 on 2 degrees of freedom, p= 0.43 
    n= 26 
    
    
    > survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian,
    +         dist="exponential")
    Call:
    survreg(formula = Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, 
        dist = "exponential")
    
    Coefficients:
    (Intercept)     ecog.ps          rx 
      6.9618376  -0.4331347   0.5815027 
    
    Scale fixed at 1 # 注意这里
    
    Loglik(model)= -97.2   Loglik(intercept only)= -98
    	Chisq= 1.67 on 2 degrees of freedom, p= 0.43 
    n= 26 
    
    
    > ##########################################
    > 
    > str(lung)
    'data.frame':	228 obs. of  10 variables:
     $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...
     $ time     : num  306 455 1010 210 883 ...
     $ status   : num  2 2 1 2 2 1 2 2 2 2 ...
     $ age      : num  74 68 56 57 60 74 68 71 53 61 ...
     $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...
     $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...
     $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...
     $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...
     $ meal.cal : num  1175 1225 NA 1150 NA ...
     $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...
    
    > # weibull分布,如果设置scale<=0,模型将使用最大似然估计,估计最优的scale
    > myfit<-survreg(Surv(time, status) ~ ph.ecog + age + sex, data=lung,dist = "weibull")
    > myfit
    Call:
    survreg(formula = Surv(time, status) ~ ph.ecog + age + sex, data = lung, 
        dist = "weibull")
    
    Coefficients:
     (Intercept)      ph.ecog          age          sex 
     6.273435252 -0.339638098 -0.007475439  0.401090541 
    
    Scale= 0.731109 
    
    Loglik(model)= -1132.4   Loglik(intercept only)= -1147.4
    	Chisq= 29.98 on 3 degrees of freedom, p= 1.4e-06 
    n=227 (1 observation deleted due to missingness)
    
    > summary(myfit)
    Call:
    survreg(formula = Surv(time, status) ~ ph.ecog + age + sex, data = lung, 
        dist = "weibull")
                   Value Std. Error     z        p
    (Intercept)  6.27344    0.45358 13.83 1.66e-43
    ph.ecog     -0.33964    0.08348 -4.07 4.73e-05
    age         -0.00748    0.00676 -1.11 2.69e-01
    sex          0.40109    0.12373  3.24 1.19e-03
    Log(scale)  -0.31319    0.06135 -5.11 3.30e-07
    
    Scale= 0.731 
    
    Weibull distribution
    Loglik(model)= -1132.4   Loglik(intercept only)= -1147.4
    	Chisq= 29.98 on 3 degrees of freedom, p= 1.4e-06 
    Number of Newton-Raphson Iterations: 5 
    n=227 (1 observation deleted due to missingness)
     
     #   survreg's scale  =    1/(rweibull shape)
     #   survreg's intercept = log(rweibull scale)
     # survreg结果中输出的scale与“rweibull scale”不同
    
     
    ##############################################
    > # weibull分布,以sex对数据分组,产生2个不同的scale
    > myfit1<-survreg(Surv(time, status) ~ ph.ecog + age + strata(sex), data=lung,dist = "weibull") 
    > summary(myfit1)
    Call:
    survreg(formula = Surv(time, status) ~ ph.ecog + age + strata(sex), 
        data = lung, dist = "weibull")
                   Value Std. Error      z        p
    (Intercept)  6.73235    0.42396 15.880 8.75e-57
    ph.ecog     -0.32443    0.08649 -3.751 1.76e-04
    age         -0.00581    0.00693 -0.838 4.02e-01
    sex=1       -0.24408    0.07920 -3.082 2.06e-03
    sex=2       -0.42345    0.10669 -3.969 7.22e-05
    
    Scale:
    sex=1 sex=2 
    0.783 0.655 
    
    Weibull distribution
    Loglik(model)= -1137.3   Loglik(intercept only)= -1146.2
    	Chisq= 17.8 on 2 degrees of freedom, p= 0.00014 
    Number of Newton-Raphson Iterations: 5 
    n=227 (1 observation deleted due to missingness)
    
    
    ################################################
    # 具有高斯误差的线性回归,以及左删失数据
    > survreg(Surv(durable, durable>0, type='left') ~ age + quant,
    +         data=tobin, dist='gaussian', scale = 0)
    Call:
    survreg(formula = Surv(durable, durable > 0, type = "left") ~ 
        age + quant, data = tobin, dist = "gaussian", scale = 0)
    
    Coefficients:
    (Intercept)         age       quant 
    15.14486636 -0.12905928 -0.04554166 
    
    Scale= 5.57254 
    
    Loglik(model)= -28.9   Loglik(intercept only)= -29.5
    	Chisq= 1.1 on 2 degrees of freedom, p= 0.58 
    n= 20 
    

    3.survdiff
    测试在两条或更多条生存曲线之间是否存在差异
    survdiff(formula, data, subset, na.action, rho=0)
    rho = 0 表示log-rank or Mantel-Haenszel检验;
    rho = 1 表示Wilcoxon检验

    log-rank检验(时序检验)--生存时间分布近似weibull分布或者属于比例风险模型时效率较高
    似然比检验(likelihood ratio test)--生存时间分布近似指数分布时效率较高
    wilcoxon检验--生存时间分布近似对数正态分布效率较高

    survdiff使用示例

    > survdiff(Surv(futime, fustat) ~ rx,data=ovarian)
    Call:
    survdiff(formula = Surv(futime, fustat) ~ rx, data = ovarian)
    
          N Observed Expected (O-E)^2/E (O-E)^2/V
    rx=1 13        7     5.23     0.596      1.06
    rx=2 13        5     6.77     0.461      1.06
    
     Chisq= 1.1  on 1 degrees of freedom, p= 0.303 
    
    
    
    > # 用strata来控制协变量的影响
    > survdiff(Surv(time, status) ~ pat.karno + strata(inst), data=lung)
    Call:
    survdiff(formula = Surv(time, status) ~ pat.karno + strata(inst), 
        data = lung)
    
    n=224, 4 observations deleted due to missingness.
    
                   N Observed Expected (O-E)^2/E (O-E)^2/V
    pat.karno=30   2        1    0.692   0.13720   0.15752
    pat.karno=40   2        1    1.099   0.00889   0.00973
    pat.karno=50   4        4    1.166   6.88314   7.45359
    pat.karno=60  30       27   16.298   7.02790   9.57333
    pat.karno=70  41       31   26.358   0.81742   1.14774
    pat.karno=80  50       38   41.938   0.36978   0.60032
    pat.karno=90  60       38   47.242   1.80800   3.23078
    pat.karno=100 35       21   26.207   1.03451   1.44067
    
     Chisq= 21.4  on 7 degrees of freedom, p= 0.00326 
    
    
    
    > survdiff(Surv(time, status) ~ pat.karno + sex, data=lung)
    Call:
    survdiff(formula = Surv(time, status) ~ pat.karno + sex, data = lung)
    
    n=225, 3 observations deleted due to missingness.
    
                          N Observed Expected (O-E)^2/E (O-E)^2/V
    pat.karno=30, sex=1   1        1    0.246  2.31e+00  2.33e+00
    pat.karno=30, sex=2   1        0    0.412  4.12e-01  4.16e-01
    pat.karno=40, sex=1   1        1    0.132  5.68e+00  5.72e+00
    pat.karno=40, sex=2   1        0    1.204  1.20e+00  1.22e+00
    pat.karno=50, sex=1   2        2    0.111  3.23e+01  3.25e+01
    pat.karno=50, sex=2   2        2    0.968  1.10e+00  1.11e+00
    pat.karno=60, sex=1  18       17    9.173  6.68e+00  7.14e+00
    pat.karno=60, sex=2  12       10    6.064  2.56e+00  2.68e+00
    pat.karno=70, sex=1  30       23   16.737  2.34e+00  2.65e+00
    pat.karno=70, sex=2  11        8    9.527  2.45e-01  2.62e-01
    pat.karno=80, sex=1  32       26   24.570  8.32e-02  9.91e-02
    pat.karno=80, sex=2  19       13   16.311  6.72e-01  7.55e-01
    pat.karno=90, sex=1  31       25   24.992  2.66e-06  3.21e-06
    pat.karno=90, sex=2  29       13   24.420  5.34e+00  6.33e+00
    pat.karno=100, sex=1 21       15   14.002  7.11e-02  7.91e-02
    pat.karno=100, sex=2 14        6   13.131  3.87e+00  4.25e+00
    
     Chisq= 66.1  on 15 degrees of freedom, p= 2.17e-08 
    

    anova
    计算一个或多个拟合模型的方差(或偏差)表的分析

    mod1<-survreg(Surv(time, status) ~ ph.ecog + age + sex, data=lung,dist = "weibull") 
    mod2<-survreg(Surv(time, status) ~ ph.ecog + age + sex+ph.karno*pat.karno, data=lung,dist = "weibull") 
       
    anova(mod1,mod2,test="Chisq") 
                                           Terms Resid. Df    -2*LL Test Df Deviance     Pr(>Chi) 
    1                        ph.ecog + age + sex       222 2264.877      NA       NA           NA
    2 ph.ecog + age + sex + ph.karno * pat.karno       215 2209.372    =  7 55.50527 1.183848e-09 
      
    library(MASS) 
    # 简洁模型更好 
    stepAIC(mod1) 
    stepAIC(mod2) 
    
  • 相关阅读:
    格式化HDFS出现java.io.IOException: Cannot create directory /opt/hdfs/name/current错误
    Hadoop集群安装教程(完全分布模式)——更新中
    将sql语句嵌入到c语言中——codeblocks
    centos虚拟机网络连接问题
    Linux虚拟机如何调整登录界面的分辨率——解决登录界面图标过大的问题
    Spring Cloud常用组件超时总结
    程序集加载与反射笔记
    ASP.NET分页
    显式向标识列插入数据
    JIT和程序的首次执行
  • 原文地址:https://www.cnblogs.com/wwxbi/p/6182851.html
Copyright © 2011-2022 走看看