zoukankan      html  css  js  c++  java
  • Spark Multilayer perceptron classifier (MLPC)多层感知器分类器

      多层感知器分类器(MLPC)是基于前馈人工神经网络(ANN)的分类器。 MLPC由多个节点层组成。 每个层完全连接到网络中的下一层。 输入层中的节点表示输入数据。 所有其他节点,通过输入与节点的权重w和偏置b的线性组合,并应用激活函数,将输入映射到输出。 对于具有K + 1层的MLPC,这可以以矩阵形式写成如下:

    中间层中的节点使用sigmoid(logistic)函数:

    输出层中的节点使用softmax函数:

    输出层中的节点数量N对应于类的数量。

      MLPC采用反向传播学习模型(BP算法)。 我们使用用于优化的逻辑损失函数和L-BFGS作为优化程序。

    导入包

    import org.apache.spark.sql.SparkSession
    import org.apache.spark.sql.Dataset
    import org.apache.spark.sql.Row
    import org.apache.spark.sql.DataFrame
    import org.apache.spark.sql.Column
    import org.apache.spark.sql.DataFrameReader
    import org.apache.spark.rdd.RDD
    import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
    import org.apache.spark.sql.Encoder
    import org.apache.spark.sql.DataFrameStatFunctions
    import org.apache.spark.sql.functions._
    
    import org.apache.spark.ml.linalg.Vectors
    import org.apache.spark.ml.feature.VectorAssembler
    import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
    import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
    

    导入数据源

    val spark = SparkSession.builder().appName("Spark Multilayer perceptron classifier").config("spark.some.config.option", "some-value").getOrCreate()
    
    // For implicit conversions like converting RDDs to DataFrames
    import spark.implicits._
    
    val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(  
          (0, "male", 37, 10, "no", 3, 18, 7, 4),  
          (0, "female", 27, 4, "no", 4, 14, 6, 4),  
          (0, "female", 32, 15, "yes", 1, 12, 1, 4),  
          (0, "male", 57, 15, "yes", 5, 18, 6, 5),  
          (0, "male", 22, 0.75, "no", 2, 17, 6, 3),  
          (0, "female", 32, 1.5, "no", 2, 17, 5, 5),  
          (0, "female", 22, 0.75, "no", 2, 12, 1, 3),  
          (0, "male", 57, 15, "yes", 2, 14, 4, 4),  
          (0, "female", 32, 15, "yes", 4, 16, 1, 2),  
          (0, "male", 22, 1.5, "no", 4, 14, 4, 5),  
          (0, "male", 37, 15, "yes", 2, 20, 7, 2),  
          (0, "male", 27, 4, "yes", 4, 18, 6, 4),  
          (0, "male", 47, 15, "yes", 5, 17, 6, 4),  
          (0, "female", 22, 1.5, "no", 2, 17, 5, 4),  
          (0, "female", 27, 4, "no", 4, 14, 5, 4),  
          (0, "female", 37, 15, "yes", 1, 17, 5, 5),  
          (0, "female", 37, 15, "yes", 2, 18, 4, 3),  
          (0, "female", 22, 0.75, "no", 3, 16, 5, 4),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 27, 10, "yes", 2, 14, 1, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 27, 10, "yes", 4, 16, 5, 4),  
          (0, "female", 32, 10, "yes", 3, 14, 1, 5),  
          (0, "male", 37, 4, "yes", 2, 20, 6, 4),  
          (0, "female", 22, 1.5, "no", 2, 18, 5, 5),  
          (0, "female", 27, 7, "no", 4, 16, 1, 5),  
          (0, "male", 42, 15, "yes", 5, 20, 6, 4),  
          (0, "male", 27, 4, "yes", 3, 16, 5, 5),  
          (0, "female", 27, 4, "yes", 3, 17, 5, 4),  
          (0, "male", 42, 15, "yes", 4, 20, 6, 3),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5),  
          (0, "male", 27, 0.417, "no", 4, 17, 6, 4),  
          (0, "female", 42, 15, "yes", 5, 14, 5, 4),  
          (0, "male", 32, 4, "yes", 1, 18, 6, 4),  
          (0, "female", 22, 1.5, "no", 4, 16, 5, 3),  
          (0, "female", 42, 15, "yes", 3, 12, 1, 4),  
          (0, "female", 22, 4, "no", 4, 17, 5, 5),  
          (0, "male", 22, 1.5, "yes", 1, 14, 3, 5),  
          (0, "female", 22, 0.75, "no", 3, 16, 1, 5),  
          (0, "male", 32, 10, "yes", 5, 20, 6, 5),  
          (0, "male", 52, 15, "yes", 5, 18, 6, 3),  
          (0, "female", 22, 0.417, "no", 5, 14, 1, 4),  
          (0, "female", 27, 4, "yes", 2, 18, 6, 1),  
          (0, "female", 32, 7, "yes", 5, 17, 5, 3),  
          (0, "male", 22, 4, "no", 3, 16, 5, 5),  
          (0, "female", 27, 7, "yes", 4, 18, 6, 5),  
          (0, "female", 42, 15, "yes", 2, 18, 5, 4),  
          (0, "male", 27, 1.5, "yes", 4, 16, 3, 5),  
          (0, "male", 42, 15, "yes", 2, 20, 6, 4),  
          (0, "female", 22, 0.75, "no", 5, 14, 3, 5),  
          (0, "male", 32, 7, "yes", 2, 20, 6, 4),  
          (0, "male", 27, 4, "yes", 5, 20, 6, 5),  
          (0, "male", 27, 10, "yes", 4, 20, 6, 4),  
          (0, "male", 22, 4, "no", 1, 18, 5, 5),  
          (0, "female", 37, 15, "yes", 4, 14, 3, 1),  
          (0, "male", 22, 1.5, "yes", 5, 16, 4, 4),  
          (0, "female", 37, 15, "yes", 4, 17, 1, 5),  
          (0, "female", 27, 0.75, "no", 4, 17, 5, 4),  
          (0, "male", 32, 10, "yes", 4, 20, 6, 4),  
          (0, "female", 47, 15, "yes", 5, 14, 7, 2),  
          (0, "male", 37, 10, "yes", 3, 20, 6, 4),  
          (0, "female", 22, 0.75, "no", 2, 16, 5, 5),  
          (0, "male", 27, 4, "no", 2, 18, 4, 5),  
          (0, "male", 32, 7, "no", 4, 20, 6, 4),  
          (0, "male", 42, 15, "yes", 2, 17, 3, 5),  
          (0, "male", 37, 10, "yes", 4, 20, 6, 4),  
          (0, "female", 47, 15, "yes", 3, 17, 6, 5),  
          (0, "female", 22, 1.5, "no", 5, 16, 5, 5),  
          (0, "female", 27, 1.5, "no", 2, 16, 6, 4),  
          (0, "female", 27, 4, "no", 3, 17, 5, 5),  
          (0, "female", 32, 10, "yes", 5, 14, 4, 5),  
          (0, "female", 22, 0.125, "no", 2, 12, 5, 5),  
          (0, "male", 47, 15, "yes", 4, 14, 4, 3),  
          (0, "male", 32, 15, "yes", 1, 14, 5, 5),  
          (0, "male", 27, 7, "yes", 4, 16, 5, 5),  
          (0, "female", 22, 1.5, "yes", 3, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 3, 17, 6, 5),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5),  
          (0, "male", 57, 15, "yes", 2, 14, 7, 2),  
          (0, "male", 17.5, 1.5, "yes", 3, 18, 6, 5),  
          (0, "male", 57, 15, "yes", 4, 20, 6, 5),  
          (0, "female", 22, 0.75, "no", 2, 16, 3, 4),  
          (0, "male", 42, 4, "no", 4, 17, 3, 3),  
          (0, "female", 22, 1.5, "yes", 4, 12, 1, 5),  
          (0, "female", 22, 0.417, "no", 1, 17, 6, 4),  
          (0, "female", 32, 15, "yes", 4, 17, 5, 5),  
          (0, "female", 27, 1.5, "no", 3, 18, 5, 2),  
          (0, "female", 22, 1.5, "yes", 3, 14, 1, 5),  
          (0, "female", 37, 15, "yes", 3, 14, 1, 4),  
          (0, "female", 32, 15, "yes", 4, 14, 3, 4),  
          (0, "male", 37, 10, "yes", 2, 14, 5, 3),  
          (0, "male", 37, 10, "yes", 4, 16, 5, 4),  
          (0, "male", 57, 15, "yes", 5, 20, 5, 3),  
          (0, "male", 27, 0.417, "no", 1, 16, 3, 4),  
          (0, "female", 42, 15, "yes", 5, 14, 1, 5),  
          (0, "male", 57, 15, "yes", 3, 16, 6, 1),  
          (0, "male", 37, 10, "yes", 1, 16, 6, 4),  
          (0, "male", 37, 15, "yes", 3, 17, 5, 5),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 5),  
          (0, "female", 27, 10, "yes", 5, 14, 1, 5),  
          (0, "male", 37, 10, "yes", 2, 18, 6, 4),  
          (0, "female", 22, 0.125, "no", 4, 12, 4, 5),  
          (0, "male", 57, 15, "yes", 5, 20, 6, 5),  
          (0, "female", 37, 15, "yes", 4, 18, 6, 4),  
          (0, "male", 22, 4, "yes", 4, 14, 6, 4),  
          (0, "male", 27, 7, "yes", 4, 18, 5, 4),  
          (0, "male", 57, 15, "yes", 4, 20, 5, 4),  
          (0, "male", 32, 15, "yes", 3, 14, 6, 3),  
          (0, "female", 22, 1.5, "no", 2, 14, 5, 4),  
          (0, "female", 32, 7, "yes", 4, 17, 1, 5),  
          (0, "female", 37, 15, "yes", 4, 17, 6, 5),  
          (0, "female", 32, 1.5, "no", 5, 18, 5, 5),  
          (0, "male", 42, 10, "yes", 5, 20, 7, 4),  
          (0, "female", 27, 7, "no", 3, 16, 5, 4),  
          (0, "male", 37, 15, "no", 4, 20, 6, 5),  
          (0, "male", 37, 15, "yes", 4, 14, 3, 2),  
          (0, "male", 32, 10, "no", 5, 18, 6, 4),  
          (0, "female", 22, 0.75, "no", 4, 16, 1, 5),  
          (0, "female", 27, 7, "yes", 4, 12, 2, 4),  
          (0, "female", 27, 7, "yes", 2, 16, 2, 5),  
          (0, "female", 42, 15, "yes", 5, 18, 5, 4),  
          (0, "male", 42, 15, "yes", 4, 17, 5, 3),  
          (0, "female", 27, 7, "yes", 2, 16, 1, 2),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 5),  
          (0, "male", 37, 15, "yes", 5, 20, 6, 5),  
          (0, "female", 22, 0.125, "no", 2, 14, 4, 5),  
          (0, "male", 27, 1.5, "no", 4, 16, 5, 5),  
          (0, "male", 32, 1.5, "no", 2, 18, 6, 5),  
          (0, "male", 27, 1.5, "no", 2, 17, 6, 5),  
          (0, "female", 27, 10, "yes", 4, 16, 1, 3),  
          (0, "male", 42, 15, "yes", 4, 18, 6, 5),  
          (0, "female", 27, 1.5, "no", 2, 16, 6, 5),  
          (0, "male", 27, 4, "no", 2, 18, 6, 3),  
          (0, "female", 32, 10, "yes", 3, 14, 5, 3),  
          (0, "female", 32, 15, "yes", 3, 18, 5, 4),  
          (0, "female", 22, 0.75, "no", 2, 18, 6, 5),  
          (0, "female", 37, 15, "yes", 2, 16, 1, 4),  
          (0, "male", 27, 4, "yes", 4, 20, 5, 5),  
          (0, "male", 27, 4, "no", 1, 20, 5, 4),  
          (0, "female", 27, 10, "yes", 2, 12, 1, 4),  
          (0, "female", 32, 15, "yes", 5, 18, 6, 4),  
          (0, "male", 27, 7, "yes", 5, 12, 5, 3),  
          (0, "male", 52, 15, "yes", 2, 18, 5, 4),  
          (0, "male", 27, 4, "no", 3, 20, 6, 3),  
          (0, "male", 37, 4, "yes", 1, 18, 5, 4),  
          (0, "male", 27, 4, "yes", 4, 14, 5, 4),  
          (0, "female", 52, 15, "yes", 5, 12, 1, 3),  
          (0, "female", 57, 15, "yes", 4, 16, 6, 4),  
          (0, "male", 27, 7, "yes", 1, 16, 5, 4),  
          (0, "male", 37, 7, "yes", 4, 20, 6, 3),  
          (0, "male", 22, 0.75, "no", 2, 14, 4, 3),  
          (0, "male", 32, 4, "yes", 2, 18, 5, 3),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 3),  
          (0, "male", 22, 0.75, "yes", 2, 14, 4, 3),  
          (0, "male", 42, 15, "yes", 4, 20, 6, 3),  
          (0, "female", 52, 15, "yes", 5, 17, 1, 1),  
          (0, "female", 37, 15, "yes", 4, 14, 1, 2),  
          (0, "male", 27, 7, "yes", 4, 14, 5, 3),  
          (0, "male", 32, 4, "yes", 2, 16, 5, 5),  
          (0, "female", 27, 4, "yes", 2, 18, 6, 5),  
          (0, "female", 27, 4, "yes", 2, 18, 5, 5),  
          (0, "male", 37, 15, "yes", 5, 18, 6, 5),  
          (0, "female", 47, 15, "yes", 5, 12, 5, 4),  
          (0, "female", 32, 10, "yes", 3, 17, 1, 4),  
          (0, "female", 27, 1.5, "yes", 4, 17, 1, 2),  
          (0, "female", 57, 15, "yes", 2, 18, 5, 2),  
          (0, "female", 22, 1.5, "no", 4, 14, 5, 4),  
          (0, "male", 42, 15, "yes", 3, 14, 3, 4),  
          (0, "male", 57, 15, "yes", 4, 9, 2, 2),  
          (0, "male", 57, 15, "yes", 4, 20, 6, 5),  
          (0, "female", 22, 0.125, "no", 4, 14, 4, 5),  
          (0, "female", 32, 10, "yes", 4, 14, 1, 5),  
          (0, "female", 42, 15, "yes", 3, 18, 5, 4),  
          (0, "female", 27, 1.5, "no", 2, 18, 6, 5),  
          (0, "male", 32, 0.125, "yes", 2, 18, 5, 2),  
          (0, "female", 27, 4, "no", 3, 16, 5, 4),  
          (0, "female", 27, 10, "yes", 2, 16, 1, 4),  
          (0, "female", 32, 7, "yes", 4, 16, 1, 3),  
          (0, "female", 37, 15, "yes", 4, 14, 5, 4),  
          (0, "female", 42, 15, "yes", 5, 17, 6, 2),  
          (0, "male", 32, 1.5, "yes", 4, 14, 6, 5),  
          (0, "female", 32, 4, "yes", 3, 17, 5, 3),  
          (0, "female", 37, 7, "no", 4, 18, 5, 5),  
          (0, "female", 22, 0.417, "yes", 3, 14, 3, 5),  
          (0, "female", 27, 7, "yes", 4, 14, 1, 5),  
          (0, "male", 27, 0.75, "no", 3, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 2, 20, 5, 5),  
          (0, "male", 32, 10, "yes", 4, 16, 4, 5),  
          (0, "male", 32, 15, "yes", 1, 14, 5, 5),  
          (0, "male", 22, 0.75, "no", 3, 17, 4, 5),  
          (0, "female", 27, 7, "yes", 4, 17, 1, 4),  
          (0, "male", 27, 0.417, "yes", 4, 20, 5, 4),  
          (0, "male", 37, 15, "yes", 4, 20, 5, 4),  
          (0, "female", 37, 15, "yes", 2, 14, 1, 3),  
          (0, "male", 22, 4, "yes", 1, 18, 5, 4),  
          (0, "male", 37, 15, "yes", 4, 17, 5, 3),  
          (0, "female", 22, 1.5, "no", 2, 14, 4, 5),  
          (0, "male", 52, 15, "yes", 4, 14, 6, 2),  
          (0, "female", 22, 1.5, "no", 4, 17, 5, 5),  
          (0, "male", 32, 4, "yes", 5, 14, 3, 5),  
          (0, "male", 32, 4, "yes", 2, 14, 3, 5),  
          (0, "female", 22, 1.5, "no", 3, 16, 6, 5),  
          (0, "male", 27, 0.75, "no", 2, 18, 3, 3),  
          (0, "female", 22, 7, "yes", 2, 14, 5, 2),  
          (0, "female", 27, 0.75, "no", 2, 17, 5, 3),  
          (0, "female", 37, 15, "yes", 4, 12, 1, 2),  
          (0, "female", 22, 1.5, "no", 1, 14, 1, 5),  
          (0, "female", 37, 10, "no", 2, 12, 4, 4),  
          (0, "female", 37, 15, "yes", 4, 18, 5, 3),  
          (0, "female", 42, 15, "yes", 3, 12, 3, 3),  
          (0, "male", 22, 4, "no", 2, 18, 5, 5),  
          (0, "male", 52, 7, "yes", 2, 20, 6, 2),  
          (0, "male", 27, 0.75, "no", 2, 17, 5, 5),  
          (0, "female", 27, 4, "no", 2, 17, 4, 5),  
          (0, "male", 42, 1.5, "no", 5, 20, 6, 5),  
          (0, "male", 22, 1.5, "no", 4, 17, 6, 5),  
          (0, "male", 22, 4, "no", 4, 17, 5, 3),  
          (0, "female", 22, 4, "yes", 1, 14, 5, 4),  
          (0, "male", 37, 15, "yes", 5, 20, 4, 5),  
          (0, "female", 37, 10, "yes", 3, 16, 6, 3),  
          (0, "male", 42, 15, "yes", 4, 17, 6, 5),  
          (0, "female", 47, 15, "yes", 4, 17, 5, 5),  
          (0, "male", 22, 1.5, "no", 4, 16, 5, 4),  
          (0, "female", 32, 10, "yes", 3, 12, 1, 4),  
          (0, "female", 22, 7, "yes", 1, 14, 3, 5),  
          (0, "female", 32, 10, "yes", 4, 17, 5, 4),  
          (0, "male", 27, 1.5, "yes", 2, 16, 2, 4),  
          (0, "male", 37, 15, "yes", 4, 14, 5, 5),  
          (0, "male", 42, 4, "yes", 3, 14, 4, 5),  
          (0, "female", 37, 15, "yes", 5, 14, 5, 4),  
          (0, "female", 32, 7, "yes", 4, 17, 5, 5),  
          (0, "female", 42, 15, "yes", 4, 18, 6, 5),  
          (0, "male", 27, 4, "no", 4, 18, 6, 4),  
          (0, "male", 22, 0.75, "no", 4, 18, 6, 5),  
          (0, "male", 27, 4, "yes", 4, 14, 5, 3),  
          (0, "female", 22, 0.75, "no", 5, 18, 1, 5),  
          (0, "female", 52, 15, "yes", 5, 9, 5, 5),  
          (0, "male", 32, 10, "yes", 3, 14, 5, 5),  
          (0, "female", 37, 15, "yes", 4, 16, 4, 4),  
          (0, "male", 32, 7, "yes", 2, 20, 5, 4),  
          (0, "female", 42, 15, "yes", 3, 18, 1, 4),  
          (0, "male", 32, 15, "yes", 1, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 3, 18, 5, 5),  
          (0, "female", 32, 15, "yes", 4, 12, 3, 4),  
          (0, "male", 22, 0.75, "yes", 3, 14, 2, 4),  
          (0, "female", 22, 1.5, "no", 3, 16, 5, 3),  
          (0, "female", 42, 15, "yes", 4, 14, 3, 5),  
          (0, "female", 52, 15, "yes", 3, 16, 5, 4),  
          (0, "male", 37, 15, "yes", 5, 20, 6, 4),  
          (0, "female", 47, 15, "yes", 4, 12, 2, 3),  
          (0, "male", 57, 15, "yes", 2, 20, 6, 4),  
          (0, "male", 32, 7, "yes", 4, 17, 5, 5),  
          (0, "female", 27, 7, "yes", 4, 17, 1, 4),  
          (0, "male", 22, 1.5, "no", 1, 18, 6, 5),  
          (0, "female", 22, 4, "yes", 3, 9, 1, 4),  
          (0, "female", 22, 1.5, "no", 2, 14, 1, 5),  
          (0, "male", 42, 15, "yes", 2, 20, 6, 4),  
          (0, "male", 57, 15, "yes", 4, 9, 2, 4),  
          (0, "female", 27, 7, "yes", 2, 18, 1, 5),  
          (0, "female", 22, 4, "yes", 3, 14, 1, 5),  
          (0, "male", 37, 15, "yes", 4, 14, 5, 3),  
          (0, "male", 32, 7, "yes", 1, 18, 6, 4),  
          (0, "female", 22, 1.5, "no", 2, 14, 5, 5),  
          (0, "female", 22, 1.5, "yes", 3, 12, 1, 3),  
          (0, "male", 52, 15, "yes", 2, 14, 5, 5),  
          (0, "female", 37, 15, "yes", 2, 14, 1, 1),  
          (0, "female", 32, 10, "yes", 2, 14, 5, 5),  
          (0, "male", 42, 15, "yes", 4, 20, 4, 5),  
          (0, "female", 27, 4, "yes", 3, 18, 4, 5),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 5),  
          (0, "male", 27, 1.5, "no", 3, 18, 5, 5),  
          (0, "female", 22, 0.125, "no", 2, 16, 6, 3),  
          (0, "male", 32, 10, "yes", 2, 20, 6, 3),  
          (0, "female", 27, 4, "no", 4, 18, 5, 4),  
          (0, "female", 27, 7, "yes", 2, 12, 5, 1),  
          (0, "male", 32, 4, "yes", 5, 18, 6, 3),  
          (0, "female", 37, 15, "yes", 2, 17, 5, 5),  
          (0, "male", 47, 15, "no", 4, 20, 6, 4),  
          (0, "male", 27, 1.5, "no", 1, 18, 5, 5),  
          (0, "male", 37, 15, "yes", 4, 20, 6, 4),  
          (0, "female", 32, 15, "yes", 4, 18, 1, 4),  
          (0, "female", 32, 7, "yes", 4, 17, 5, 4),  
          (0, "female", 42, 15, "yes", 3, 14, 1, 3),  
          (0, "female", 27, 7, "yes", 3, 16, 1, 4),  
          (0, "male", 27, 1.5, "no", 3, 16, 4, 2),  
          (0, "male", 22, 1.5, "no", 3, 16, 3, 5),  
          (0, "male", 27, 4, "yes", 3, 16, 4, 2),  
          (0, "female", 27, 7, "yes", 3, 12, 1, 2),  
          (0, "female", 37, 15, "yes", 2, 18, 5, 4),  
          (0, "female", 37, 7, "yes", 3, 14, 4, 4),  
          (0, "male", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "male", 37, 15, "yes", 5, 20, 5, 4),  
          (0, "female", 22, 1.5, "no", 4, 16, 5, 3),  
          (0, "female", 32, 10, "yes", 4, 16, 1, 5),  
          (0, "male", 27, 4, "no", 2, 17, 5, 3),  
          (0, "female", 22, 0.417, "no", 4, 14, 5, 5),  
          (0, "female", 27, 4, "no", 2, 18, 5, 5),  
          (0, "male", 37, 15, "yes", 4, 18, 5, 3),  
          (0, "male", 37, 10, "yes", 5, 20, 7, 4),  
          (0, "female", 27, 7, "yes", 2, 14, 4, 2),  
          (0, "male", 32, 4, "yes", 2, 16, 5, 5),  
          (0, "male", 32, 4, "yes", 2, 16, 6, 4),  
          (0, "male", 22, 1.5, "no", 3, 18, 4, 5),  
          (0, "female", 22, 4, "yes", 4, 14, 3, 4),  
          (0, "female", 17.5, 0.75, "no", 2, 18, 5, 4),  
          (0, "male", 32, 10, "yes", 4, 20, 4, 5),  
          (0, "female", 32, 0.75, "no", 5, 14, 3, 3),  
          (0, "male", 37, 15, "yes", 4, 17, 5, 3),  
          (0, "male", 32, 4, "no", 3, 14, 4, 5),  
          (0, "female", 27, 1.5, "no", 2, 17, 3, 2),  
          (0, "female", 22, 7, "yes", 4, 14, 1, 5),  
          (0, "male", 47, 15, "yes", 5, 14, 6, 5),  
          (0, "male", 27, 4, "yes", 1, 16, 4, 4),  
          (0, "female", 37, 15, "yes", 5, 14, 1, 3),  
          (0, "male", 42, 4, "yes", 4, 18, 5, 5),  
          (0, "female", 32, 4, "yes", 2, 14, 1, 5),  
          (0, "male", 52, 15, "yes", 2, 14, 7, 4),  
          (0, "female", 22, 1.5, "no", 2, 16, 1, 4),  
          (0, "male", 52, 15, "yes", 4, 12, 2, 4),  
          (0, "female", 22, 0.417, "no", 3, 17, 1, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "male", 27, 4, "yes", 4, 20, 6, 4),  
          (0, "female", 32, 15, "yes", 4, 14, 1, 5),  
          (0, "female", 27, 1.5, "no", 2, 16, 3, 5),  
          (0, "male", 32, 4, "no", 1, 20, 6, 5),  
          (0, "male", 37, 15, "yes", 3, 20, 6, 4),  
          (0, "female", 32, 10, "no", 2, 16, 6, 5),  
          (0, "female", 32, 10, "yes", 5, 14, 5, 5),  
          (0, "male", 37, 1.5, "yes", 4, 18, 5, 3),  
          (0, "male", 32, 1.5, "no", 2, 18, 4, 4),  
          (0, "female", 32, 10, "yes", 4, 14, 1, 4),  
          (0, "female", 47, 15, "yes", 4, 18, 5, 4),  
          (0, "female", 27, 10, "yes", 5, 12, 1, 5),  
          (0, "male", 27, 4, "yes", 3, 16, 4, 5),  
          (0, "female", 37, 15, "yes", 4, 12, 4, 2),  
          (0, "female", 27, 0.75, "no", 4, 16, 5, 5),  
          (0, "female", 37, 15, "yes", 4, 16, 1, 5),  
          (0, "female", 32, 15, "yes", 3, 16, 1, 5),  
          (0, "female", 27, 10, "yes", 2, 16, 1, 5),  
          (0, "male", 27, 7, "no", 2, 20, 6, 5),  
          (0, "female", 37, 15, "yes", 2, 14, 1, 3),  
          (0, "male", 27, 1.5, "yes", 2, 17, 4, 4),  
          (0, "female", 22, 0.75, "yes", 2, 14, 1, 5),  
          (0, "male", 22, 4, "yes", 4, 14, 2, 4),  
          (0, "male", 42, 0.125, "no", 4, 17, 6, 4),  
          (0, "male", 27, 1.5, "yes", 4, 18, 6, 5),  
          (0, "male", 27, 7, "yes", 3, 16, 6, 3),  
          (0, "female", 52, 15, "yes", 4, 14, 1, 3),  
          (0, "male", 27, 1.5, "no", 5, 20, 5, 2),  
          (0, "female", 27, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 27, 1.5, "no", 3, 17, 5, 5),  
          (0, "male", 22, 0.125, "no", 5, 16, 4, 4),  
          (0, "female", 27, 4, "yes", 4, 16, 1, 5),  
          (0, "female", 27, 4, "yes", 4, 12, 1, 5),  
          (0, "female", 47, 15, "yes", 2, 14, 5, 5),  
          (0, "female", 32, 15, "yes", 3, 14, 5, 3),  
          (0, "male", 42, 7, "yes", 2, 16, 5, 5),  
          (0, "male", 22, 0.75, "no", 4, 16, 6, 4),  
          (0, "male", 27, 0.125, "no", 3, 20, 6, 5),  
          (0, "male", 32, 10, "yes", 3, 20, 6, 5),  
          (0, "female", 22, 0.417, "no", 5, 14, 4, 5),  
          (0, "female", 47, 15, "yes", 5, 14, 1, 4),  
          (0, "female", 32, 10, "yes", 3, 14, 1, 5),  
          (0, "male", 57, 15, "yes", 4, 17, 5, 5),  
          (0, "male", 27, 4, "yes", 3, 20, 6, 5),  
          (0, "female", 32, 7, "yes", 4, 17, 1, 5),  
          (0, "female", 37, 10, "yes", 4, 16, 1, 5),  
          (0, "female", 32, 10, "yes", 1, 18, 1, 4),  
          (0, "female", 22, 4, "no", 3, 14, 1, 4),  
          (0, "female", 27, 7, "yes", 4, 14, 3, 2),  
          (0, "male", 57, 15, "yes", 5, 18, 5, 2),  
          (0, "male", 32, 7, "yes", 2, 18, 5, 5),  
          (0, "female", 27, 1.5, "no", 4, 17, 1, 3),  
          (0, "male", 22, 1.5, "no", 4, 14, 5, 5),  
          (0, "female", 22, 1.5, "yes", 4, 14, 5, 4),  
          (0, "female", 32, 7, "yes", 3, 16, 1, 5),  
          (0, "female", 47, 15, "yes", 3, 16, 5, 4),  
          (0, "female", 22, 0.75, "no", 3, 16, 1, 5),  
          (0, "female", 22, 1.5, "yes", 2, 14, 5, 5),  
          (0, "female", 27, 4, "yes", 1, 16, 5, 5),  
          (0, "male", 52, 15, "yes", 4, 16, 5, 5),  
          (0, "male", 32, 10, "yes", 4, 20, 6, 5),  
          (0, "male", 47, 15, "yes", 4, 16, 6, 4),  
          (0, "female", 27, 7, "yes", 2, 14, 1, 2),  
          (0, "female", 22, 1.5, "no", 4, 14, 4, 5),  
          (0, "female", 32, 10, "yes", 2, 16, 5, 4),  
          (0, "female", 22, 0.75, "no", 2, 16, 5, 4),  
          (0, "female", 22, 1.5, "no", 2, 16, 5, 5),  
          (0, "female", 42, 15, "yes", 3, 18, 6, 4),  
          (0, "female", 27, 7, "yes", 5, 14, 4, 5),  
          (0, "male", 42, 15, "yes", 4, 16, 4, 4),  
          (0, "female", 57, 15, "yes", 3, 18, 5, 2),  
          (0, "male", 42, 15, "yes", 3, 18, 6, 2),  
          (0, "female", 32, 7, "yes", 2, 14, 1, 2),  
          (0, "male", 22, 4, "no", 5, 12, 4, 5),  
          (0, "female", 22, 1.5, "no", 1, 16, 6, 5),  
          (0, "female", 22, 0.75, "no", 1, 14, 4, 5),  
          (0, "female", 32, 15, "yes", 4, 12, 1, 5),  
          (0, "male", 22, 1.5, "no", 2, 18, 5, 3),  
          (0, "male", 27, 4, "yes", 5, 17, 2, 5),  
          (0, "female", 27, 4, "yes", 4, 12, 1, 5),  
          (0, "male", 42, 15, "yes", 5, 18, 5, 4),  
          (0, "male", 32, 1.5, "no", 2, 20, 7, 3),  
          (0, "male", 57, 15, "no", 4, 9, 3, 1),  
          (0, "male", 37, 7, "no", 4, 18, 5, 5),  
          (0, "male", 52, 15, "yes", 2, 17, 5, 4),  
          (0, "male", 47, 15, "yes", 4, 17, 6, 5),  
          (0, "female", 27, 7, "no", 2, 17, 5, 4),  
          (0, "female", 27, 7, "yes", 4, 14, 5, 5),  
          (0, "female", 22, 4, "no", 2, 14, 3, 3),  
          (0, "male", 37, 7, "yes", 2, 20, 6, 5),  
          (0, "male", 27, 7, "no", 4, 12, 4, 3),  
          (0, "male", 42, 10, "yes", 4, 18, 6, 4),  
          (0, "female", 22, 1.5, "no", 3, 14, 1, 5),  
          (0, "female", 22, 4, "yes", 2, 14, 1, 3),  
          (0, "female", 57, 15, "no", 4, 20, 6, 5),  
          (0, "male", 37, 15, "yes", 4, 14, 4, 3),  
          (0, "female", 27, 7, "yes", 3, 18, 5, 5),  
          (0, "female", 17.5, 10, "no", 4, 14, 4, 5),  
          (0, "male", 22, 4, "yes", 4, 16, 5, 5),  
          (0, "female", 27, 4, "yes", 2, 16, 1, 4),  
          (0, "female", 37, 15, "yes", 2, 14, 5, 1),  
          (0, "female", 22, 1.5, "no", 5, 14, 1, 4),  
          (0, "male", 27, 7, "yes", 2, 20, 5, 4),  
          (0, "male", 27, 4, "yes", 4, 14, 5, 5),  
          (0, "male", 22, 0.125, "no", 1, 16, 3, 5),  
          (0, "female", 27, 7, "yes", 4, 14, 1, 4),  
          (0, "female", 32, 15, "yes", 5, 16, 5, 3),  
          (0, "male", 32, 10, "yes", 4, 18, 5, 4),  
          (0, "female", 32, 15, "yes", 2, 14, 3, 4),  
          (0, "female", 22, 1.5, "no", 3, 17, 5, 5),  
          (0, "male", 27, 4, "yes", 4, 17, 4, 4),  
          (0, "female", 52, 15, "yes", 5, 14, 1, 5),  
          (0, "female", 27, 7, "yes", 2, 12, 1, 2),  
          (0, "female", 27, 7, "yes", 3, 12, 1, 4),  
          (0, "female", 42, 15, "yes", 2, 14, 1, 4),  
          (0, "female", 42, 15, "yes", 4, 14, 5, 4),  
          (0, "male", 27, 7, "yes", 4, 14, 3, 3),  
          (0, "male", 27, 7, "yes", 2, 20, 6, 2),  
          (0, "female", 42, 15, "yes", 3, 12, 3, 3),  
          (0, "male", 27, 4, "yes", 3, 16, 3, 5),  
          (0, "female", 27, 7, "yes", 3, 14, 1, 4),  
          (0, "female", 22, 1.5, "no", 2, 14, 4, 5),  
          (0, "female", 27, 4, "yes", 4, 14, 1, 4),  
          (0, "female", 22, 4, "no", 4, 14, 5, 5),  
          (0, "female", 22, 1.5, "no", 2, 16, 4, 5),  
          (0, "male", 47, 15, "no", 4, 14, 5, 4),  
          (0, "male", 37, 10, "yes", 2, 18, 6, 2),  
          (0, "male", 37, 15, "yes", 3, 17, 5, 4),  
          (0, "female", 27, 4, "yes", 2, 16, 1, 4),  
          (3, "male", 27, 1.5, "no", 3, 18, 4, 4),  
          (3, "female", 27, 4, "yes", 3, 17, 1, 5),  
          (7, "male", 37, 15, "yes", 5, 18, 6, 2),  
          (12, "female", 32, 10, "yes", 3, 17, 5, 2),  
          (1, "male", 22, 0.125, "no", 4, 16, 5, 5),  
          (1, "female", 22, 1.5, "yes", 2, 14, 1, 5),  
          (12, "male", 37, 15, "yes", 4, 14, 5, 2),  
          (7, "female", 22, 1.5, "no", 2, 14, 3, 4),  
          (2, "male", 37, 15, "yes", 2, 18, 6, 4),  
          (3, "female", 32, 15, "yes", 4, 12, 3, 2),  
          (1, "female", 37, 15, "yes", 4, 14, 4, 2),  
          (7, "female", 42, 15, "yes", 3, 17, 1, 4),  
          (12, "female", 42, 15, "yes", 5, 9, 4, 1),  
          (12, "male", 37, 10, "yes", 2, 20, 6, 2),  
          (12, "female", 32, 15, "yes", 3, 14, 1, 2),  
          (3, "male", 27, 4, "no", 1, 18, 6, 5),  
          (7, "male", 37, 10, "yes", 2, 18, 7, 3),  
          (7, "female", 27, 4, "no", 3, 17, 5, 5),  
          (1, "male", 42, 15, "yes", 4, 16, 5, 5),  
          (1, "female", 47, 15, "yes", 5, 14, 4, 5),  
          (7, "female", 27, 4, "yes", 3, 18, 5, 4),  
          (1, "female", 27, 7, "yes", 5, 14, 1, 4),  
          (12, "male", 27, 1.5, "yes", 3, 17, 5, 4),  
          (12, "female", 27, 7, "yes", 4, 14, 6, 2),  
          (3, "female", 42, 15, "yes", 4, 16, 5, 4),  
          (7, "female", 27, 10, "yes", 4, 12, 7, 3),  
          (1, "male", 27, 1.5, "no", 2, 18, 5, 2),  
          (1, "male", 32, 4, "no", 4, 20, 6, 4),  
          (1, "female", 27, 7, "yes", 3, 14, 1, 3),  
          (3, "female", 32, 10, "yes", 4, 14, 1, 4),  
          (3, "male", 27, 4, "yes", 2, 18, 7, 2),  
          (1, "female", 17.5, 0.75, "no", 5, 14, 4, 5),  
          (1, "female", 32, 10, "yes", 4, 18, 1, 5),  
          (7, "female", 32, 7, "yes", 2, 17, 6, 4),  
          (7, "male", 37, 15, "yes", 2, 20, 6, 4),  
          (7, "female", 37, 10, "no", 1, 20, 5, 3),  
          (12, "female", 32, 10, "yes", 2, 16, 5, 5),  
          (7, "male", 52, 15, "yes", 2, 20, 6, 4),  
          (7, "female", 42, 15, "yes", 1, 12, 1, 3),  
          (1, "male", 52, 15, "yes", 2, 20, 6, 3),  
          (2, "male", 37, 15, "yes", 3, 18, 6, 5),  
          (12, "female", 22, 4, "no", 3, 12, 3, 4),  
          (12, "male", 27, 7, "yes", 1, 18, 6, 2),  
          (1, "male", 27, 4, "yes", 3, 18, 5, 5),  
          (12, "male", 47, 15, "yes", 4, 17, 6, 5),  
          (12, "female", 42, 15, "yes", 4, 12, 1, 1),  
          (7, "male", 27, 4, "no", 3, 14, 3, 4),  
          (7, "female", 32, 7, "yes", 4, 18, 4, 5),  
          (1, "male", 32, 0.417, "yes", 3, 12, 3, 4),  
          (3, "male", 47, 15, "yes", 5, 16, 5, 4),  
          (12, "male", 37, 15, "yes", 2, 20, 5, 4),  
          (7, "male", 22, 4, "yes", 2, 17, 6, 4),  
          (1, "male", 27, 4, "no", 2, 14, 4, 5),  
          (7, "female", 52, 15, "yes", 5, 16, 1, 3),  
          (1, "male", 27, 4, "no", 3, 14, 3, 3),  
          (1, "female", 27, 10, "yes", 4, 16, 1, 4),  
          (1, "male", 32, 7, "yes", 3, 14, 7, 4),  
          (7, "male", 32, 7, "yes", 2, 18, 4, 1),  
          (3, "male", 22, 1.5, "no", 1, 14, 3, 2),  
          (7, "male", 22, 4, "yes", 3, 18, 6, 4),  
          (7, "male", 42, 15, "yes", 4, 20, 6, 4),  
          (2, "female", 57, 15, "yes", 1, 18, 5, 4),  
          (7, "female", 32, 4, "yes", 3, 18, 5, 2),  
          (1, "male", 27, 4, "yes", 1, 16, 4, 4),  
          (7, "male", 32, 7, "yes", 4, 16, 1, 4),  
          (2, "male", 57, 15, "yes", 1, 17, 4, 4),  
          (7, "female", 42, 15, "yes", 4, 14, 5, 2),  
          (7, "male", 37, 10, "yes", 1, 18, 5, 3),  
          (3, "male", 42, 15, "yes", 3, 17, 6, 1),  
          (1, "female", 52, 15, "yes", 3, 14, 4, 4),  
          (2, "female", 27, 7, "yes", 3, 17, 5, 3),  
          (12, "male", 32, 7, "yes", 2, 12, 4, 2),  
          (1, "male", 22, 4, "no", 4, 14, 2, 5),  
          (3, "male", 27, 7, "yes", 3, 18, 6, 4),  
          (12, "female", 37, 15, "yes", 1, 18, 5, 5),  
          (7, "female", 32, 15, "yes", 3, 17, 1, 3),  
          (7, "female", 27, 7, "no", 2, 17, 5, 5),  
          (1, "female", 32, 7, "yes", 3, 17, 5, 3),  
          (1, "male", 32, 1.5, "yes", 2, 14, 2, 4),  
          (12, "female", 42, 15, "yes", 4, 14, 1, 2),  
          (7, "male", 32, 10, "yes", 3, 14, 5, 4),  
          (7, "male", 37, 4, "yes", 1, 20, 6, 3),  
          (1, "female", 27, 4, "yes", 2, 16, 5, 3),  
          (12, "female", 42, 15, "yes", 3, 14, 4, 3),  
          (1, "male", 27, 10, "yes", 5, 20, 6, 5),  
          (12, "male", 37, 10, "yes", 2, 20, 6, 2),  
          (12, "female", 27, 7, "yes", 1, 14, 3, 3),  
          (3, "female", 27, 7, "yes", 4, 12, 1, 2),  
          (3, "male", 32, 10, "yes", 2, 14, 4, 4),  
          (12, "female", 17.5, 0.75, "yes", 2, 12, 1, 3),  
          (12, "female", 32, 15, "yes", 3, 18, 5, 4),  
          (2, "female", 22, 7, "no", 4, 14, 4, 3),  
          (1, "male", 32, 7, "yes", 4, 20, 6, 5),  
          (7, "male", 27, 4, "yes", 2, 18, 6, 2),  
          (1, "female", 22, 1.5, "yes", 5, 14, 5, 3),  
          (12, "female", 32, 15, "no", 3, 17, 5, 1),  
          (12, "female", 42, 15, "yes", 2, 12, 1, 2),  
          (7, "male", 42, 15, "yes", 3, 20, 5, 4),  
          (12, "male", 32, 10, "no", 2, 18, 4, 2),  
          (12, "female", 32, 15, "yes", 3, 9, 1, 1),  
          (7, "male", 57, 15, "yes", 5, 20, 4, 5),  
          (12, "male", 47, 15, "yes", 4, 20, 6, 4),  
          (2, "female", 42, 15, "yes", 2, 17, 6, 3),  
          (12, "male", 37, 15, "yes", 3, 17, 6, 3),  
          (12, "male", 37, 15, "yes", 5, 17, 5, 2),  
          (7, "male", 27, 10, "yes", 2, 20, 6, 4),  
          (2, "male", 37, 15, "yes", 2, 16, 5, 4),  
          (12, "female", 32, 15, "yes", 1, 14, 5, 2),  
          (7, "male", 32, 10, "yes", 3, 17, 6, 3),  
          (2, "male", 37, 15, "yes", 4, 18, 5, 1),  
          (7, "female", 27, 1.5, "no", 2, 17, 5, 5),  
          (3, "female", 47, 15, "yes", 2, 17, 5, 2),  
          (12, "male", 37, 15, "yes", 2, 17, 5, 4),  
          (12, "female", 27, 4, "no", 2, 14, 5, 5),  
          (2, "female", 27, 10, "yes", 4, 14, 1, 5),  
          (1, "female", 22, 4, "yes", 3, 16, 1, 3),  
          (12, "male", 52, 7, "no", 4, 16, 5, 5),  
          (2, "female", 27, 4, "yes", 1, 16, 3, 5),  
          (7, "female", 37, 15, "yes", 2, 17, 6, 4),  
          (2, "female", 27, 4, "no", 1, 17, 3, 1),  
          (12, "female", 17.5, 0.75, "yes", 2, 12, 3, 5),  
          (7, "female", 32, 15, "yes", 5, 18, 5, 4),  
          (7, "female", 22, 4, "no", 1, 16, 3, 5),  
          (2, "male", 32, 4, "yes", 4, 18, 6, 4),  
          (1, "female", 22, 1.5, "yes", 3, 18, 5, 2),  
          (3, "female", 42, 15, "yes", 2, 17, 5, 4),  
          (1, "male", 32, 7, "yes", 4, 16, 4, 4),  
          (12, "male", 37, 15, "no", 3, 14, 6, 2),  
          (1, "male", 42, 15, "yes", 3, 16, 6, 3),  
          (1, "male", 27, 4, "yes", 1, 18, 5, 4),  
          (2, "male", 37, 15, "yes", 4, 20, 7, 3),  
          (7, "male", 37, 15, "yes", 3, 20, 6, 4),  
          (3, "male", 22, 1.5, "no", 2, 12, 3, 3),  
          (3, "male", 32, 4, "yes", 3, 20, 6, 2),  
          (2, "male", 32, 15, "yes", 5, 20, 6, 5),  
          (12, "female", 52, 15, "yes", 1, 18, 5, 5),  
          (12, "male", 47, 15, "no", 1, 18, 6, 5),  
          (3, "female", 32, 15, "yes", 4, 16, 4, 4),  
          (7, "female", 32, 15, "yes", 3, 14, 3, 2),  
          (7, "female", 27, 7, "yes", 4, 16, 1, 2),  
          (12, "male", 42, 15, "yes", 3, 18, 6, 2),  
          (7, "female", 42, 15, "yes", 2, 14, 3, 2),  
          (12, "male", 27, 7, "yes", 2, 17, 5, 4),  
          (3, "male", 32, 10, "yes", 4, 14, 4, 3),  
          (7, "male", 47, 15, "yes", 3, 16, 4, 2),  
          (1, "male", 22, 1.5, "yes", 1, 12, 2, 5),  
          (7, "female", 32, 10, "yes", 2, 18, 5, 4),  
          (2, "male", 32, 10, "yes", 2, 17, 6, 5),  
          (2, "male", 22, 7, "yes", 3, 18, 6, 2),  
          (1, "female", 32, 15, "yes", 3, 14, 1, 5))
    	  
    val colArray1: Array[String] = Array("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")   
      
    val data = dataList.toDF(colArray1:_*) 
    

    建立多层感知器分类器MLPC模型

    data.createOrReplaceTempView("data")
    
    // 字符类型转换成数值 
    val labelWhere = "case when affairs=0 then 0 else cast(1 as double) end as label"
    val genderWhere = "case when gender='female' then 0 else cast(1 as double) end as gender"
    val childrenWhere = "case when children='no' then 0 else cast(1 as double) end as children"
    
    val dataLabelDF = spark.sql(s"select $labelWhere, $genderWhere,age,yearsmarried,$childrenWhere,religiousness,education,occupation,rating from data")
    
    val featuresArray = Array("gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
    
    // 字段转换成特征向量 
    val assembler = new VectorAssembler().setInputCols(featuresArray).setOutputCol("features")
    val vecDF: DataFrame = assembler.transform(dataLabelDF)
    vecDF.show(10, truncate = false)
    
    // 分割数据
    val splits = vecDF.randomSplit(Array(0.6, 0.4), seed = 1234L)
    val trainDF = splits(0)
    val testDF = splits(1)
    
    // 隐藏层结点数=2n+1,n为输入结点数
    // 指定神经网络的图层:输入层8个节点(即8个特征);两个隐藏层,隐藏结点数分别为9和8;输出层2个结点(即二分类)
    val layers = Array[Int](8, 9, 8, 2)
    
    
    // 建立多层感知器分类器MLPC模型
    // 传统神经网络通常,层数<=5,隐藏层数<=3
    // layers 指定神经网络的图层
    // MaxIter 最大迭代次数
    // stepSize 每次优化的迭代步长,仅适用于solver="gd"
    // blockSize 用于在矩阵中堆叠输入数据的块大小以加速计算。 数据在分区内堆叠。 如果块大小大于分区中的剩余数据,则将其调整为该数据的大小。 建议大小介于10到1000之间。默认值:128
    // initialWeights 模型的初始权重
    // solver 算法优化。 支持的选项:“gd”(minibatch梯度下降)或“l-bfgs”。 默认值:“l-bfgs”
    val trainer = new MultilayerPerceptronClassifier().setFeaturesCol("features").setLabelCol("label").setLayers(layers)
    //.setMaxIter(100).setTol(1E-4).setSeed(1234L)
    //.setBlockSize(128).setSolver("l-bfgs")
    //.setInitialWeights(Vector).setStepSize(0.03)
    
    // 训练模型
    val model = trainer.fit(trainDF)
    // 测试
    val result = model.transform(testDF)
    val predictionLabels = result.select("prediction", "label")
    
    // 计算精度
    val evaluator = new MulticlassClassificationEvaluator().setPredictionCol("prediction").setLabelCol("label").setMetricName("accuracy")
    println("Accuracy: " + evaluator.evaluate(predictionLabels))
    

    代码执行结果

    vecDF.show(10, truncate = false)
    +-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
    |label|gender|age |yearsmarried|children|religiousness|education|occupation|rating|features                            |
    +-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
    |0.0  |1.0   |37.0|10.0        |0.0     |3.0          |18.0     |7.0       |4.0   |[1.0,37.0,10.0,0.0,3.0,18.0,7.0,4.0]|
    |0.0  |0.0   |27.0|4.0         |0.0     |4.0          |14.0     |6.0       |4.0   |[0.0,27.0,4.0,0.0,4.0,14.0,6.0,4.0] |
    |0.0  |0.0   |32.0|15.0        |1.0     |1.0          |12.0     |1.0       |4.0   |[0.0,32.0,15.0,1.0,1.0,12.0,1.0,4.0]|
    |0.0  |1.0   |57.0|15.0        |1.0     |5.0          |18.0     |6.0       |5.0   |[1.0,57.0,15.0,1.0,5.0,18.0,6.0,5.0]|
    |0.0  |1.0   |22.0|0.75        |0.0     |2.0          |17.0     |6.0       |3.0   |[1.0,22.0,0.75,0.0,2.0,17.0,6.0,3.0]|
    |0.0  |0.0   |32.0|1.5         |0.0     |2.0          |17.0     |5.0       |5.0   |[0.0,32.0,1.5,0.0,2.0,17.0,5.0,5.0] |
    |0.0  |0.0   |22.0|0.75        |0.0     |2.0          |12.0     |1.0       |3.0   |[0.0,22.0,0.75,0.0,2.0,12.0,1.0,3.0]|
    |0.0  |1.0   |57.0|15.0        |1.0     |2.0          |14.0     |4.0       |4.0   |[1.0,57.0,15.0,1.0,2.0,14.0,4.0,4.0]|
    |0.0  |0.0   |32.0|15.0        |1.0     |4.0          |16.0     |1.0       |2.0   |[0.0,32.0,15.0,1.0,4.0,16.0,1.0,2.0]|
    |0.0  |1.0   |22.0|1.5         |0.0     |4.0          |14.0     |4.0       |5.0   |[1.0,22.0,1.5,0.0,4.0,14.0,4.0,5.0] |
    +-----+------+----+------------+--------+-------------+---------+----------+------+------------------------------------+
    only showing top 10 rows
    
    
    // 分割数据
    val splits = vecDF.randomSplit(Array(0.6, 0.4), seed = 1234L)
    splits: Array[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] = Array([label: double, gender: double ... 8 more fields], [label: double, gender: double ... 8 more fields])
    
    val trainDF = splits(0)
    trainDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, gender: double ... 8 more fields]
    
    val testDF = splits(1)
    testDF: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, gender: double ... 8 more fields]
    
    // 隐藏层结点数=2n+1,n为输入结点数
    // 指定神经网络的图层:输入层8个节点(即8个特征);两个隐藏层,隐藏结点数分别为9和8;输出层2个结点(即二分类)
    val layers = Array[Int](8, 9, 8, 2)
    layers: Array[Int] = Array(8, 9, 8, 2)
    
    // 建立多层感知器分类器MLPC模型
    // 传统神经网络通常,层数<=5,隐藏层数<=3
    // layers 指定神经网络的图层
    // MaxIter 最大迭代次数
    // stepSize 每次优化的迭代步长,仅适用于solver="gd"
    // blockSize 用于在矩阵中堆叠输入数据的块大小以加速计算。 数据在分区内堆叠。 如果块大小大于分区中的剩余数据,则将其调整为该数据的大小。 建议大小介于10到1000之间。默认值:128
    // initialWeights 模型的初始权重
    // solver 算法优化。 支持的选项:“gd”(minibatch梯度下降)或“l-bfgs”。 默认值:“l-bfgs”
    val trainer = new MultilayerPerceptronClassifier().setFeaturesCol("features").setLabelCol("label").setLayers(layers)
    //.setMaxIter(100).setTol(1E-4).setSeed(1234L)
    //.setBlockSize(128).setSolver("l-bfgs")
    //.setInitialWeights(Vector).setStepSize(0.03)
    
    // 训练模型
    val model = trainer.fit(trainDF)
    
    // 测试
    val result = model.transform(testDF)
    result: org.apache.spark.sql.DataFrame = [label: double, gender: double ... 9 more fields]
    
    val predictionLabels = result.select("prediction", "label")
    predictionLabels: org.apache.spark.sql.DataFrame = [prediction: double, label: double]
    
    
    // 计算精度
    val evaluator = new MulticlassClassificationEvaluator().setPredictionCol("prediction").setLabelCol("label").setMetricName("accuracy")
    
    println("Accuracy: " + evaluator.evaluate(predictionLabels))
    Accuracy: 0.7229437229437229
    
    model.extractParamMap()
    res7: org.apache.spark.ml.param.ParamMap =
    {
    	mlpc_27ec9285cc65-featuresCol: features,
    	mlpc_27ec9285cc65-labelCol: label,
    	mlpc_27ec9285cc65-predictionCol: prediction
    }
    
    model.layers
    res8: Array[Int] = Array(8, 9, 8, 2)
    
    model.numFeatures
    res9: Int = 8
    
    model.weights
    res10: org.apache.spark.ml.linalg.Vector = [0.6687947649918738,0.19748283690078897,-50.45651427272606,-45.341284166506405,-0.6919873953519974,-0.26471957984972305,0.23736474165465096,0.436660
    4816264614,-0.710245071766165,-0.5988483140879621,-1.7544682663368922,15.823927446929437,-22.032609932367354,0.22889325554600204,-0.6427955112694319,-0.3723715157477082,0.7674184433539617,-0.3716890493835326,0.36611178436831204,-0.044164649859209495,-21.138120634483425,-41.97482820667807,0.8325520012775748,0.04477409210962596,-0.4552441455426475,0.0350190939749595,-0.06185632639036518,0.5480105570145155,0.44454066597818026,3.0222205130311064,-19.289596176945746,-0.3104490505088977,-0.77751632210236,-0.05028469739291188,-0.4138707133706901,0.6942105256488522,-0.00808567540478167,0.24805364902280116,2...
    
    result.show(20,false)
    +-----+------+----+------------+--------+-------------+---------+----------+------+-------------------------------------+----------+
    |label|gender|age |yearsmarried|children|religiousness|education|occupation|rating|features                             |prediction|
    +-----+------+----+------------+--------+-------------+---------+----------+------+-------------------------------------+----------+
    |0.0  |0.0   |22.0|0.125       |0.0     |2.0          |12.0     |5.0       |5.0   |[0.0,22.0,0.125,0.0,2.0,12.0,5.0,5.0]|0.0       |
    |0.0  |0.0   |22.0|0.125       |0.0     |2.0          |14.0     |4.0       |5.0   |[0.0,22.0,0.125,0.0,2.0,14.0,4.0,5.0]|0.0       |
    |0.0  |0.0   |22.0|0.125       |0.0     |2.0          |16.0     |6.0       |3.0   |[0.0,22.0,0.125,0.0,2.0,16.0,6.0,3.0]|0.0       |
    |0.0  |0.0   |22.0|0.417       |0.0     |5.0          |14.0     |1.0       |4.0   |[0.0,22.0,0.417,0.0,5.0,14.0,1.0,4.0]|0.0       |
    |0.0  |0.0   |22.0|0.417       |1.0     |3.0          |14.0     |3.0       |5.0   |[0.0,22.0,0.417,1.0,3.0,14.0,3.0,5.0]|0.0       |
    |0.0  |0.0   |22.0|0.75        |0.0     |2.0          |16.0     |3.0       |4.0   |[0.0,22.0,0.75,0.0,2.0,16.0,3.0,4.0] |0.0       |
    |0.0  |0.0   |22.0|0.75        |0.0     |3.0          |16.0     |1.0       |5.0   |[0.0,22.0,0.75,0.0,3.0,16.0,1.0,5.0] |0.0       |
    |0.0  |0.0   |22.0|1.5         |0.0     |2.0          |16.0     |5.0       |5.0   |[0.0,22.0,1.5,0.0,2.0,16.0,5.0,5.0]  |0.0       |
    |0.0  |0.0   |22.0|1.5         |0.0     |2.0          |17.0     |5.0       |4.0   |[0.0,22.0,1.5,0.0,2.0,17.0,5.0,4.0]  |0.0       |
    |0.0  |0.0   |22.0|1.5         |0.0     |2.0          |18.0     |5.0       |5.0   |[0.0,22.0,1.5,0.0,2.0,18.0,5.0,5.0]  |0.0       |
    |0.0  |0.0   |22.0|1.5         |0.0     |3.0          |16.0     |5.0       |5.0   |[0.0,22.0,1.5,0.0,3.0,16.0,5.0,5.0]  |0.0       |
    |0.0  |0.0   |22.0|1.5         |0.0     |3.0          |16.0     |6.0       |5.0   |[0.0,22.0,1.5,0.0,3.0,16.0,6.0,5.0]  |0.0       |
    |0.0  |0.0   |22.0|1.5         |0.0     |4.0          |16.0     |5.0       |3.0   |[0.0,22.0,1.5,0.0,4.0,16.0,5.0,3.0]  |0.0       |
    |0.0  |0.0   |22.0|1.5         |1.0     |3.0          |12.0     |1.0       |3.0   |[0.0,22.0,1.5,1.0,3.0,12.0,1.0,3.0]  |0.0       |
    |0.0  |0.0   |22.0|1.5         |1.0     |4.0          |12.0     |1.0       |5.0   |[0.0,22.0,1.5,1.0,4.0,12.0,1.0,5.0]  |0.0       |
    |0.0  |0.0   |22.0|4.0         |1.0     |3.0          |9.0      |1.0       |4.0   |[0.0,22.0,4.0,1.0,3.0,9.0,1.0,4.0]   |0.0       |
    |0.0  |0.0   |22.0|4.0         |1.0     |3.0          |14.0     |1.0       |5.0   |[0.0,22.0,4.0,1.0,3.0,14.0,1.0,5.0]  |0.0       |
    |0.0  |0.0   |22.0|7.0         |1.0     |2.0          |14.0     |5.0       |2.0   |[0.0,22.0,7.0,1.0,2.0,14.0,5.0,2.0]  |0.0       |
    |0.0  |0.0   |27.0|1.5         |0.0     |2.0          |18.0     |6.0       |5.0   |[0.0,27.0,1.5,0.0,2.0,18.0,6.0,5.0]  |0.0       |
    |0.0  |0.0   |27.0|4.0         |0.0     |3.0          |17.0     |5.0       |5.0   |[0.0,27.0,4.0,0.0,3.0,17.0,5.0,5.0]  |0.0       |
    +-----+------+----+------------+--------+-------------+---------+----------+------+-------------------------------------+----------+
    only showing top 20 rows
    
  • 相关阅读:
    javascript实现网页分享至朋友圈功能
    Vue中全局过滤器期与局部过滤器期的使用
    vue中添加与删除,关键字搜索
    vue生命周期
    4种常用的Ajax请求方式
    CSS 基础总结
    BEM思想之彻底弄清BEM语法
    学习前端过程中用到的资料
    深入理解,函数声明、函数表达式、匿名函数、立即执行函数、window.onload的区别.
    html基础
  • 原文地址:https://www.cnblogs.com/wwxbi/p/6226046.html
Copyright © 2011-2022 走看看