1.取出一个新闻列表页的全部新闻 包装成函数。
2.获取总的新闻篇数,算出新闻总页数。
3.获取全部新闻列表页的全部新闻详情。
# -*- coding : UTF-8 -*- # -*- author : onexiaofeng -*- import requests from bs4 import BeautifulSoup from datetime import datetime import re import jieba # 获取新闻点击次数 def getClickCount(url): #使用正则表达式获得新闻编号 newsId = re.findall(r'\_(.*).html', url)[0][-4:] #生成点击次数的Request URL clickUrl = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(newsId) clickRes = requests.get(clickUrl) # 利用正则表达式获取新闻点击次数 clickCount = int(re.search("hits').html('(.*)');", clickRes.text).group(1)) return clickCount def Get_page(url): content_info = {} res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') for new in soup.select('li'): if len(new.select('.news-list-title')) > 0: newsUrl = new.select('a')[0]['href'] # 调用getNewsDetail()获取新闻详情 resd = requests.get(newsUrl) resd.encoding = 'utf-8' soupd = BeautifulSoup(resd.text, 'html.parser') content = soupd.select('#content')[0].text info = soupd.select('.show-info')[0].text # 调用getNewsId()获取点击次数 count = getClickCount(newsUrl) # 识别时间格式 date = re.search('(d{4}.d{2}.d{2}sd{2}.d{2}.d{2})', info).group(1) # 识别一个至三个数据 if (info.find('作者:') > 0): author = re.search('作者:((.{2,4}s|.{2,4}、){1,3})', info).group(1) if (info.find('审核:') > 0): check = re.search('审核:((.{2,4}s){1,3})', info).group(1) if (info.find('来源:') > 0): sources = re.search('来源:(.*)s*摄|点', info).group(1) # 用datetime将时间字符串转换为datetime类型 dateTime = datetime.strptime(date, '%Y-%m-%d %H:%M:%S') # 利用format对字符串进行操作 print('--------------------------------------------------------') print('发布时间:{0} 作者:{1} 审核:{2} 来源:{3} 点击次数:{4}'.format(dateTime, author, check, sources, count)) #print(content) url = 'http://news.gzcc.cn/html/xiaoyuanxinwen/' resd = requests.get(url) resd.encoding = 'utf-8' soup1 = BeautifulSoup(resd.text, 'html.parser') n = int(soup1.select('.a1')[0].text.rstrip('条'))//10+1 # listCount = int(soup.select('.a1')[0].text.rstrip('条'))//10+1 Get_page(url) for i in range(2, n): Get_page('http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'.format(i))
4.找一个自己感兴趣的主题,进行数据爬取,并进行分词分析。不能与其它同学雷同。
# -*- coding : UTF-8 -*- # -*- author : onexiaofeng -*- import requests from bs4 import BeautifulSoup from datetime import datetime import re import jieba # 获取新闻点击次数 ''' def getClickCount(url): # 使用正则表达式获得新闻编号 newsId = re.findall(r'\_(.*).html', url)[0][-4:] # 生成点击次数的Request URL clickUrl = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(newsId) clickRes = requests.get(clickUrl) # 利用正则表达式获取新闻点击次数 clickCount = int(re.search("hits').html('(.*)');", clickRes.text).group(1)) return clickCount ''' def getKeynews(content): content = ''.join(re.findall('[u4e00-u9fa5]', content)) # 通过正则表达式选取中文字符数组,拼接为无标点字符内容 #去掉重复的字符生成集合 newSet = set(jieba._lcut(content)) print(newSet) newDict = {} for i in newSet: newDict[i] = content.count(i) deleteList, keynews = [], [] for i in newDict.keys(): if len(i) < 2: deleteList.append(i) # 去掉单字无意义字符 for i in deleteList: del newDict[i] dictList = list(newDict.items()) dictList.sort(key=lambda item: item[1], reverse=True) # 排序,返回前三关键字 for i in range(3): keynews.append(dictList[i][0]) return keynews def getNewsDetail(newsUrl): resd = requests.get(newsUrl) resd.encoding = 'utf-8' soupd = BeautifulSoup(resd.text, 'html.parser') source=soupd.select('.comeFrom')[0].select('a')[0].text time=soupd.select('#pubtime_baidu')[0].text content = soupd.select('.artical-main-content')[0].text keynews = getKeynews(content) print('发布时间:{0} 来源:{1}'.format(time, source)) print('新闻内容:{0} '.format(content)) print('前三关键字:{0} '.format(keynews)) def Get_page(url): res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') # print(soup.select('.tag-list-box')[0].select('.list')) for new in soup.select('.tag-list-box')[0].select('.list'): #print(new.select('.list-content')[0] .select('.name')[0].select('.n1')[0].select('a')[0]['href']) url =new.select('.list-content')[0] .select('.name')[0].select('.n1')[0].select('a')[0]['href'] getNewsDetail(url) print(url) #break # break # print(url) url = 'https://voice.hupu.com/nba/tag/3023-1.html' resd = requests.get(url) resd.encoding = 'utf-8' soup1 = BeautifulSoup(resd.text, 'html.parser') # listCount = int(soup.select('.a1')[0].text.rstrip('条'))//10+1 Get_page(url) for i in range(2, 4): Get_page('https://voice.hupu.com/nba/tag/3023-{}.html'.format(i))