[UVa1615]Highway
算法竞赛入门经典第8章8-11(P255)
题目大意:给定平面上N个点和D,要求在x轴上选出一些点,每个给定的点至少与一个选出的点欧几里得距离<=D
试题分析:对于每个点,我们只需要以其为圆心做半径为D的圆,求其与x轴的两个交点,确定这个点的一条线段,然后进行线段覆盖形贪心即可。
代码:
#include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> #define LL long long using namespace std; inline int read(){ int x=0,f=1;char c=getchar(); for(;!isdigit(c);c=getchar()) if(c=='-') f=-1; for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f; } const int INF = 999999; const int MAXN = 100001; int L,D; int N; struct data{ int x,y; double lx,ly; }a[MAXN+1]; bool cmp(data a,data b){ return a.ly<b.ly; } int main(){ while(scanf("%d%d",&L,&D)!=EOF){ N=read(); for(int i=1;i<=N;i++){ a[i].x=read(),a[i].y=read(); a[i].lx=(double)a[i].x-sqrt((double)D*(double)D-(double)a[i].y*(double)a[i].y); a[i].ly=(double)a[i].x+sqrt((double)D*(double)D-(double)a[i].y*(double)a[i].y); a[i].lx=max(a[i].lx,0.0); a[i].ly=min(a[i].ly,(double)L); } sort(a+1,a+N+1,cmp); int tmp=-1,ans=0; for(int i=1;i<=N;i++){ if(tmp<a[i].lx){ tmp=a[i].ly; ans++; } } printf("%d ",ans); } }