zoukankan      html  css  js  c++  java
  • [题解] Luogu P4721 【模板】分治 FFT

    分治FFT的板子为什么要求逆呢


    传送门

    这个想法有点(cdq)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和(g)卷积一下,这样就可以算出左区间里的(f)对右边的贡献,然后再算右边的就好了。

    手玩一组样例吧:g=[0,3,1,2](默认(g[0] = 0)

    一开始,只有f[0]=1

    f: [1 0|0 0]
    

    然后我们从中间分开来,先算左边的

    f: [1|0|0 0]
    

    然后在分下去我们会找到(f[0]),就拿这一段和(g)数组卷积,得到(f[1])

    f: [1 3|0 0]
    

    现在我们已经算完了左半段,拿([1,3])([0,3,1,2])卷积,会得到这个序列([0,3,10,5,6])

    从$10 $开始,把值累加到右半段上

    f: [1 3|10|5]
    

    再对右半段分治,然后我们会访问到(10),发现只有一个数,回溯。这样我们有确定了一个左半段,再拿([10])([0 ,3 ,1 ,2])卷积,就是([0,30,10,20]),然后把(30)开始的值累加到右半段上((f[3])开始的)

    f: [1 3 10 35]
    

    然后就做完了。

    好我们来玩一下样例2!

    做卷积的话可以(NTT),还有就是在开始就可以把原序列补成一个长度为(2^k)的数组,这样就避免了一些特殊情况。

    分治的时候具体细节的话可以看代码

    (Code:)

    #include <bits/stdc++.h>
    using namespace std;
    const int N=300010,P=998244353,G=3,IG=(P+1)/G;
    inline int fpow(int a,int b){
    	int ret=1; for (;b;b>>=1,a=1ll*a*a%P)
    		if(b&1)ret=1ll*ret*a%P;
    	return ret;
    }
    inline int add(int x,int y){return x+y>=P?x+y-P:x+y;}
    inline int sub(int x,int y){return x-y<0?x-y+P:x-y;}
    namespace Poly{
    	int rev[N];
    	void init(int limit){
    		for (int i=0;i<limit;i++) rev[i]=rev[i>>1]>>1|((i&1)?limit>>1:0);
    	}
    	void ntt(int *f,int n,int flg){
    		for (int i=0;i<n;i++)
    			if(rev[i]<i) swap(f[i],f[rev[i]]);
    		for (int len=2,k=1;len<=n;len<<=1,k<<=1){
    			int wn=fpow(flg==1?G:IG,(P-1)/len);
    			for (int i=0;i<n;i+=len){
    				for (int j=i,w=1;j<i+k;j++,w=1ll*w*wn%P){
    					int tmp=1ll*w*f[j+k]%P;
    					f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
    				}
    			}	
    		}
    	}
    }
    using Poly::ntt;
    int ans[N],f[N],g[N],a[N],n;
    void solve(int l,int r){
    	if (l+1>=r) return;
    	int mid=l+((r-l)>>1);
    	solve(l,mid); 
    	int len=r-l;
    	Poly::init(len);
    	for (int i=0;i<len;i++) g[i]=a[i];
    	for (int i=l;i<mid;i++) f[i-l]=ans[i];
    	for (int i=mid;i<r;i++) f[i-l]=0;
    	ntt(f,len,1),ntt(g,len,1);
    	for (int i=0;i<len;i++) f[i]=1ll*f[i]*g[i]%P;
    	ntt(f,len,-1); int inv=fpow(len,P-2);
    	for (int i=mid;i<r;i++) ans[i]=add(ans[i],1ll*f[i-l]*inv%P);
    	solve(mid,r); // 注意一定要先把左半段的贡献加上去再算右边
    }
    int main(){
    	scanf("%d",&n);
    	for (int i=1;i<n;i++) scanf("%d",&a[i]);
    	int limit=1; while(limit<n)limit<<=1; // 补项
    	ans[0]=1,solve(0,limit);
    	for (int i=0;i<n;i++)printf("%d ",ans[i]);
    	return 0;
    }
    
  • 相关阅读:
    C# json字符串格式
    JS网页换肤
    JS 播放列表收缩展开
    js学习系列之-----apply和call
    JS下拉图片Demo3
    算法---001
    inline-block 左边固定,右边自适应
    css3动画特效:上下晃动的div
    通过js写一个消息弹框
    css3 操作动画要点
  • 原文地址:https://www.cnblogs.com/wxq1229/p/12237490.html
Copyright © 2011-2022 走看看