zoukankan      html  css  js  c++  java
  • CF1175F The Number of Subpermutations

    题目链接

    题意

    给出一个长度为(n)的序列(a),问有多少个区间([l,r])满足:在区间([l,r])内,([1,r-l+1])的每个整数都恰好出现了一次。
    (n le 3 imes 10 ^ 5),(a_i le n)

    思路

    可以发现,其实最后的答案一定不会很大。

    所以:暴力出奇迹!!!

    先对题意进行小小的转化,题目等价于问有多少个区间([l,r])满足以下两个条件:

    1.区间([l,r])中的每个数字都只在区间([l,r])中出现了一遍
    2.(max{a_l,a_{l+1}...a_r}=r-l + 1)

    首先只考虑条件一

    从后往前扫这个序列。用(nxt_i)表示在满足每个数字只出现一遍的前提下,以i为左端,右端点最靠右的位置。(感性理解,我也不知道该咋表述了233.)换句话说,就是([i,nxt_i - 1])这个区间是满足条件的,而([i,nxt_i])是不满足条件的。用(pos_i)表示i这个数字上次出现的位置。那么就有(nxt_i = min(nxt_{i+1},pos[a_i]))

    在上面的基础上,找满足第二个条件的区间

    在当前区间左端点为l的情况下,右端点可以是([l,nxt_l-1])

    直接枚举肯定爆炸。

    从左到右枚举右端点r,

    当找到满足条件的区间时,就把答案加上1。然后继续枚举

    如果当前枚举的区间不符合条件时,也就是说(l+max{a_l,a_{l+1}...a_r} > r)时。那么从r到(l+max{a_l,a_{l+1}...a_r})肯定也是不满足条件的,所以直接把(r)调到(l+max{a_l,a_{l+1}...a_r})就行了。

    然后就可以跑过去这道题了(似乎还蛮快的233)。

    代码

    /*
    * @Author: wxyww
    * @Date:   2019-06-06 15:53:44
    * @Last Modified time: 2019-06-06 16:36:31
    */
    #include<cstdio>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #include<ctime>
    using namespace std;
    typedef long long ll;
    const int N = 300000 + 100;
    ll read() {
    	ll x=0,f=1;char c=getchar();
    	while(c<'0'||c>'9') {
    		if(c=='-') f=-1;
    		c=getchar();
    	}
    	while(c>='0'&&c<='9') {
    		x=x*10+c-'0';
    		c=getchar();
    	}
    	return x*f;
    }
    int tree[N << 2];
    int a[N];
    void build(int rt,int l,int r) {
    	if(l == r) {
    		tree[rt] = a[l];return;
    	}
    	int mid = (l + r) >> 1;
    	build(rt << 1,l,mid);
    	build(rt << 1 | 1,mid + 1,r);
    	tree[rt] = max(tree[rt << 1],tree[rt << 1 | 1]);
    }
    int query(int rt,int l,int r,int L,int R) {
    	if(L <= l && R >= r) return tree[rt];
    	int mid = (l + r) >> 1;
    	int ret = 0;
    	if(L <= mid) ret = max(ret,query(rt << 1,l,mid,L,R));
    	if(R > mid) ret = max(ret,query(rt << 1 | 1,mid + 1,r,L,R));
    	return ret;
    }
    int nxt[N],pos[N],n;
    int main() {
    	n = read();
    	for(int i = 1;i <= n;++i) a[i] = read(),pos[i] = n + 1;
    	build(1,1,n);
    	int ans = 0;
    	nxt[n + 1] = n + 1;
    	for(int i = n;i >= 1;--i) {
    		nxt[i] = min(pos[a[i]],nxt[i + 1]);
    		pos[a[i]] = i;
    		for(int j = i;j < nxt[i];++j) {
    			int x = query(1,1,n,i,j);
    			if(i + x - 1 > j) j = i + x - 2;else ++ans;
    		}
    	}
    	cout<<ans;
    	return 0;
    }
    
  • 相关阅读:
    Matplotlib.pyplot 三维绘图
    Matplotlib.pyplot 二维绘图
    面对对象进阶
    面对对象基础
    python安装第三方模块
    json & pickle
    os模块
    sys模块
    正则表达式
    Python2与Python3的编码差异
  • 原文地址:https://www.cnblogs.com/wxyww/p/CF1175F.html
Copyright © 2011-2022 走看看