C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59
简单的线段树点更新模板 RE了一次 后来改了把while那里的输入改了就过了
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define inf 1e18
using namespace std;
int t, n;
const int maxn = 50005;
int people[maxn], tree[maxn << 2],lazy[maxn << 2];
void pushup(int rt)//更新
{
tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
}
void build(int l, int r, int rt)
{
if(l == r){
tree[rt] = people[l];
return;
}
int m = (l + r) >> 1;
build(l, m, rt << 1);
build(m + 1, r, rt << 1 | 1);
pushup(rt);
}
void pushdown(int rt, int ln, int rn)
{
if(lazy[rt]){
lazy[rt << 1] += lazy[rt];
lazy[rt << 1 | 1] += lazy[rt];
tree[rt << 1] += lazy[rt] * ln;
tree[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
void update(int L, int C, int l, int r, int rt)
{
if(l == r){
tree[rt] += C;
return;
}
int m = (l + r) >>1;
if(L <= m) update(L, C, l, m, rt << 1);
else update(L, C, m + 1, r, rt << 1 | 1);
pushup(rt);
}
void update(int L, int R, int C, int l, int r, int rt)
{
if(L <= l && r <= R){//本区间完全在操作区间内
tree[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
int m = (l + r) >> 1;
pushdown(rt, m - l + 1, r - m);
if(L <= m) update(L, R, C, l, m, rt << 1);
if(R > m) update(L, R, C, m + 1, r, rt << 1 | 1);
pushup(rt);
}
int query(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R){
return tree[rt];
}
int m = (l + r) >> 1;
pushdown(rt, m - l + 1, r - m);
int ans = 0;
if(L <= m) ans += query(L, R, l, m, rt << 1);
if(R > m) ans += query(L, R, m + 1, r, rt << 1 | 1);
return ans;
}
int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
cout<<"Case "<<cas<<":"<<endl;
cin>>n;
for(int i = 1; i <= n; i++){
scanf("%d", &people[i]);
}
build(1, n, 1);
char s[10], ch;
int a, b;
while(1){
scanf("%s", s);
if(s[0] == 'E')
break;
else
scanf("%d %d", &a, &b);
if(s[0] == 'A'){
update(a, b, 1, n, 1);
}
else if(s[0] == 'S'){
update(a, -b, 1, n, 1);
}
else{
cout<<query(a, b, 1, n, 1)<<endl;
}
}
}
return 0;
}