zoukankan      html  css  js  c++  java
  • SPOJ Distinct Substrings【后缀数组】

    Given a string, we need to find the total number of its distinct substrings.

    Input

    T- number of test cases. T<=20;
    Each test case consists of one string, whose length is <= 1000

    Output

    For each test case output one number saying the number of distinct substrings.

    Example

    Sample Input:
    2
    CCCCC
    ABABA

    Sample Output:
    5
    9

    Explanation for the testcase with string ABABA: 
    len=1 : A,B
    len=2 : AB,BA
    len=3 : ABA,BAB
    len=4 : ABAB,BABA
    len=5 : ABABA
    Thus, total number of distinct substrings is 9.

    题意:

    求一个字符串中所有的不相同的子串个数。

    思路:

    一个字符串的所有子串个数是n*(n+1)/2,关键就是有多少是重复的。

    一个子串其实就是原字符串某个后缀的前缀,找到有多少重复的其实就是找后缀的lcp

    比如我们遍历到了第k个后缀,本来他可以产生len个前缀,但是他的前面有一部分前缀是已经算过的了。

    而且由于 LCP(i,j)=min{LCP(k-1,k)|i+1≤k≤j} ,且对 i≤j<k,LCP(j,k)≥LCP(i,k)

    每加入一个后缀,应该减去max(LCP(i,j)), 也就是LCP(i-1,i),也就是height[i]

     1 #include <iostream>
     2 #include <set>
     3 #include <cmath>
     4 #include <stdio.h>
     5 #include <cstring>
     6 #include <algorithm>
     7 #include <vector>
     8 #include <queue>
     9 #include <map>
    10 using namespace std;
    11 typedef long long LL;
    12 #define inf 0x7f7f7f7f
    13 
    14 const int maxn = 1005;
    15 int t;
    16 char str[maxn];
    17 
    18 int sa[maxn];
    19 int t1[maxn], t2[maxn], c[maxn];
    20 int rnk[maxn], height[maxn];
    21 
    22 void build_sa(int s[], int n, int m)
    23 {
    24     int i, j, p, *x = t1, *y = t2;
    25     for(i = 0; i < m; i++)c[i] = 0;
    26     for(i = 0; i < n; i++)c[x[i] = s[i]]++;
    27     for(i = 1; i < m; i++)c[i] += c[i - 1];
    28     for(i = n - 1; i >= 0; i--)sa[--c[x[i]]] = i;
    29     for(j = 1; j <= n; j <<= 1){
    30         p = 0;
    31         for(i = n - j; i < n; i++)y[p++] = i;
    32         for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
    33         for(i = 0; i < m; i++)c[i] = 0;
    34         for(i = 0; i < n; i++)c[x[y[i]]]++;
    35         for(i = 1; i < m; i++)c[i] += c[i - 1];
    36         for(i = n - 1; i >= 0; i--)sa[--c[x[y[i]]]] = y[i];
    37         swap(x, y);
    38         p = 1;
    39         x[sa[0]] = 0;
    40         for(i = 1; i < n; i++)
    41             x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + j] == y[sa[i] + j] ? p - 1:p++;
    42         if(p >= n)break;
    43         m = p;
    44     }
    45 }
    46 
    47 void get_height(int s[], int n)
    48 {
    49     int i, j, k = 0;
    50     for(i = 0; i <= n; i++)rnk[sa[i]] = i;
    51     for(i = 0; i < n; i++){
    52         if(k) k--;
    53         j = sa[rnk[i] - 1];
    54         while(s[i + k] == s[j + k])k++;
    55         height[rnk[i]] = k;
    56     }
    57 }
    58 
    59 int s[maxn];
    60 int main()
    61 {
    62     scanf("%d", &t);
    63     while(t--){
    64         scanf("%s", str);
    65         int n = strlen(str);
    66         for(int i = 0; i <= n; i++)s[i] = str[i];
    67         build_sa(s, n + 1, 200);
    68         get_height(s, n);
    69         LL ans = n * (n + 1) / 2;
    70         //cout<<ans<<endl;
    71         for(int i = 1; i <= n; i++){
    72             ans -= height[i];
    73         }
    74         printf("%lld
    ", ans);
    75 
    76     }
    77     return 0;
    78 }
  • 相关阅读:
    vue seven day
    vue six day
    vue five day
    vue four day
    vue three day
    vue two day
    vue one day
    leetcode105-Golang根据前序遍历与中序遍历构建二叉树
    配置树莓派的frp反向代理与supervisor进程守护与开机自启脚本
    Golang实现二分查找算法
  • 原文地址:https://www.cnblogs.com/wyboooo/p/9865280.html
Copyright © 2011-2022 走看看