zoukankan      html  css  js  c++  java
  • 计算机视觉之图像美化(实现图片直方图、直方图均衡化、图片修补、亮度增强、磨皮美白、高斯均值滤波、中值滤波等功能)

    1.彩色图片直方图

    测试代码如下:

     1 import cv2
     2 import numpy as np
     3 def ImageHist(image,type):
     4     color = (255,255,255)
     5     windowName = 'Gray'
     6     if type == 31:
     7         color = (255,0,0)
     8         windowName = 'B Hist'
     9     elif type == 32:
    10         color = (0,255,0)
    11         windowName = 'G Hist'
    12     elif type == 33:
    13         color = (0,0,255)
    14         windowName = 'R Hist'
    15     # 参数 1 image 2 第一个通道  3模板 4 分成多少份 5各像素的值
    16     hist = cv2.calcHist([image],[0],None,[256],[0.0,255.0])
    17     minV,maxV,minL,maxL = cv2.minMaxLoc(hist)
    18     histImg = np.zeros([256,256,3],np.uint8)
    19     for h in range(256):
    20         intenNormal = int(hist[h]*256/maxV)
    21         cv2.line(histImg,(h,256),(h,256-intenNormal),color)
    22     cv2.imshow(windowName,histImg)
    23     return histImg
    24 img = cv2.imread('image0.jpg', 1)
    25 channels = cv2.split(img)  # 分解成三个通道
    26 print(channels)
    27 for i in range(0,3):
    28     ImageHist(channels[i],31+i)
    29 cv2.waitKey(0)

    运行结果如下:

    蓝色通道下的直方图:

    绿色通道下的直方图:

    红色通道下的直方图:

     

    灰度直方图源码实现:

     1 # encoding:utf-8
     2 
     3 import cv2
     4 import numpy as np
     5 import matplotlib.pyplot as plt
     6 
     7 # 本质 统计每个像素灰度 出现的概率 0-255 p
     8 img = cv2.imread('image0.jpg',1)
     9 imgInfo = img.shape
    10 height = imgInfo[0]
    11 width = imgInfo[1]
    12 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    13 cnt = np.zeros(256,np.float)
    14 for i in range(0,height):
    15     for j in range(0,width):
    16         pixel = gray[i,j]
    17         index = int(pixel)
    18         cnt[index] = cnt[index]+1
    19 for i in range(0,256):
    20     cnt[i] = cnt[i]/(height*width)
    21 # x轴
    22 x = np.linspace(0,255,256)
    23 # y轴
    24 y = cnt
    25 plt.bar(x,y,0.9,alpha=1,color='b')
    26 plt.show()
    27 cv2.waitKey(0)

    运行结果如下:

    彩色直方图源码实现:

     1 # encoding:utf-8
     2 
     3 import cv2
     4 import numpy as np
     5 import matplotlib.pyplot as plt
     6 
     7 # 本质 统计每个像素灰度 出现的概率 0-255 p
     8 img = cv2.imread('image0.jpg',1)
     9 imgInfo = img.shape
    10 height = imgInfo[0]
    11 width = imgInfo[1]
    12 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    13 cnt_b = np.zeros(256,np.float)
    14 cnt_g = np.zeros(256,np.float)
    15 cnt_r = np.zeros(256,np.float)
    16 for i in range(0,height):
    17     for j in range(0,width):
    18         (b,g,r) = img[i,j]
    19         index_b = int(b)
    20         index_g = int(g)
    21         index_r = int(r)
    22         cnt_b[index_b] = cnt_b[index_b]+1
    23         cnt_r[index_r] = cnt_r[index_r]+1
    24         cnt_g[index_g] = cnt_g[index_g]+1
    25 for i in range(0,256):
    26     cnt_b[i] = cnt_b[i]/(height*width)
    27     cnt_r[i] = cnt_r[i]/(height*width)
    28     cnt_r[i] = cnt_r[i]/(height*width)
    29 # x轴
    30 x = np.linspace(0,255,256)
    31 # y轴
    32 y_b = cnt_b
    33 plt.figure()
    34 plt.bar(x,y_b,0.9,alpha=1,color='b')
    35 y_r = cnt_r
    36 plt.figure()
    37 plt.bar(x,y_r,0.9,alpha=1,color='r')
    38 y_g = cnt_g
    39 plt.figure()
    40 plt.bar(x,y_g,0.9,alpha=1,color='g')
    41 plt.show()
    42 cv2.waitKey(0)

    蓝色通道下:

    绿色通道下:

    红色通道下:

    2.直方图均衡化

    灰度图均衡化:

    测试代码如下:

    1 import cv2
    2 import numpy as np
    3 img = cv2.imread('image0.jpg', 1)
    4 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    5 cv2.imshow('src',gray)
    6 dst = cv2.equalizeHist(gray)
    7 cv2.imshow('dst',dst)
    8 cv2.waitKey(0)

    运行结果如下:

    src初始图像:

    均衡化后的图像:

    BGR彩色图均衡化:

    测试代码如下:

     1 import cv2
     2 import numpy as np
     3 img = cv2.imread('image0.jpg', 1)
     4 cv2.imshow('src',img)
     5 # 通道分解分割成三个分量
     6 (b,g,r) = cv2.split(img)
     7 bH = cv2.equalizeHist(b)
     8 gH = cv2.equalizeHist(g)
     9 rH = cv2.equalizeHist(r)
    10 # 通道合成
    11 result = cv2.merge((bH,gH,rH))
    12 cv2.imshow('dst',result)
    13 cv2.waitKey(0)

    运行结果如下:

    src为初始图像:

    dst为均衡化之后的图像:

    其他的均衡化:(待补充。。。)

    测试代码如下:

     1 import cv2
     2 import numpy as np
     3 img = cv2.imread('image0.jpg', 1)
     4 imgYUV = cv2.cvtColor(img,cv2.COLOR_BGR2YCrCb)
     5 cv2.imshow('src',img)
     6 channelYUV = cv2.split(imgYUV)
     7 # for i in range(0,3):
     8 #     channelYUV[i] = cv2.equalizeHist(channelYUV[i])
     9 # channelYUV[0] = cv2.equalizeHist(channelYUV[0])
    10 channelYUV[1] = cv2.equalizeHist(channelYUV[1])
    11 # channelYUV[2] = cv2.equalizeHist(channelYUV[2])
    12 channels = cv2.merge(channelYUV)
    13 result = cv2.cvtColor(channels,cv2.COLOR_YCrCb2BGR)
    14 cv2.imshow('dst',result)
    15 cv2.waitKey(0)

    运行结果如下:

    src原图像:

    绿色通道下:

    红色通道下: 

    蓝色通道下:

    三个通道一起:

    灰度直方图均衡化源码实现:

     1 # 本质 统计每个像素灰度 出现的概率 0-255 p
     2 # 累积概率
     3 # 1 0.2 0.2
     4 # 2 0.3 0.5
     5 # 3 0.1 0.6
     6 # 256个累积概率
     7 import cv2
     8 import numpy as np
     9 import matplotlib.pyplot as plt
    10 img = cv2.imread('image0.jpg',1)
    11 imgInfo = img.shape
    12 height = imgInfo[0]
    13 width = imgInfo[1]
    14 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    15 cv2.imshow('src',gray)
    16 count = np.zeros(256,np.float)
    17 for i in range(0,height):
    18     for j in range(0,width):
    19         pixel = gray[i,j]
    20         index = int(pixel)
    21         count[index] = count[index]+1
    22 for i in range(0,255):
    23     count[i] = count[i]/(height*width)
    24 # 计算累计概率
    25 sum1 = float(0)
    26 for i in range(0,256):
    27     sum1 = sum1+count[i]
    28     count[i] = sum1
    29 # print(count)
    30 # 计算映射表
    31 map1 = np.zeros(256,np.uint16)
    32 for i in range(0,256):
    33     map1[i] = np.uint16(count[i]*255)
    34 # 映射
    35 for i in range(0,height):
    36     for j in range(0,width):
    37         pixel = gray[i,j]
    38         gray[i,j] = map1[pixel]
    39 cv2.imshow('dst',gray)
    40 cv2.waitKey(0)

    运行结果:

    彩色直方图均衡化源码实现:

     1 # encoding:utf-8
     2 
     3 import cv2
     4 import numpy as np
     5 import matplotlib.pyplot as plt
     6 
     7 # 本质 统计每个像素灰度 出现的概率 0-255 p
     8 img = cv2.imread('image0.jpg',1)
     9 cv2.imshow('src',img)
    10 imgInfo = img.shape
    11 height = imgInfo[0]
    12 width = imgInfo[1]
    13 # gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    14 cnt_b = np.zeros(256,np.float)
    15 cnt_g = np.zeros(256,np.float)
    16 cnt_r = np.zeros(256,np.float)
    17 for i in range(0,height):
    18     for j in range(0,width):
    19         (b,g,r) = img[i,j]
    20         index_b = int(b)
    21         index_g = int(g)
    22         index_r = int(r)
    23         cnt_b[index_b] = cnt_b[index_b]+1
    24         cnt_r[index_r] = cnt_r[index_r]+1
    25         cnt_g[index_g] = cnt_g[index_g]+1
    26 for i in range(0,256):
    27     cnt_b[i] = cnt_b[i]/(height*width)
    28     cnt_r[i] = cnt_r[i]/(height*width)
    29     cnt_g[i] = cnt_g[i]/(height*width)
    30 # 计算机累积概率
    31 sum_b = float(0)
    32 sum_g = float(0)
    33 sum_r = float(0)
    34 for i in range(0,256):
    35     sum_b = sum_b+cnt_b[i]
    36     sum_g = sum_g+cnt_g[i]
    37     sum_r = sum_r+cnt_r[i]
    38     cnt_b[i] = sum_b
    39     cnt_g[i] = sum_g
    40     cnt_r[i] = sum_r
    41 # 生成映射表
    42 map_b = np.zeros(256,np.uint16)
    43 map_g = np.zeros(256,np.uint16)
    44 map_r = np.zeros(256,np.uint16)
    45 for i in range(0,256):
    46     map_b[i] = np.uint16(cnt_b[i]*255)
    47     map_g[i] = np.uint16(cnt_g[i]*255)
    48     map_r[i] = np.uint16(cnt_r[i]*255)
    49 # 映射
    50 dst = np.zeros((height,width,3),np.uint8)
    51 for i in range(0,height):
    52     for j in range(0,width):
    53         (n,g,r) = img[i,j]
    54         b = map_b[b]
    55         g = map_g[g]
    56         r = map_r[r]
    57         dst[i,j]= (b,g,r)
    58 cv2.imshow('dst',dst)
    59 cv2.waitKey(0)

    运行结果:

     3.图片修补

    首先构建一副画图:

     1 import cv2
     2 import numpy as np
     3 
     4 img = cv2.imread('image0.jpg',1)
     5 for i in range(200,300):
     6     img[i,200] = (255,255,255)
     7     img[i,200+1] = (255,255,255)
     8     img[i,200-1] = (255,255,255)
     9 for i in range(150,250):
    10     img[250,i] = (255,255,255)
    11     img[250+1,i] = (255,255,255)
    12     img[250-1,i] = (255,255,255)
    13 cv2.imwrite('damaged.jpg',img)
    14 cv2.imshow('damaged.jpg',img)
    15 cv2.waitKey(0)

    构建的坏图为:(多了一个白十字)

    修补坏图,测试代码如下:

     1 # 1 坏图 2 修补那一部分 3 调用api实现修补
     2 import cv2
     3 import numpy as np
     4 img = cv2.imread('damaged.jpg',1)
     5 cv2.imshow('damaged',img)
     6 imgInfo = img.shape
     7 height = imgInfo[0]
     8 width = imgInfo[1]
     9 paint = np.zeros((height,width,1),np.uint8)
    10 for i in range(200,300):
    11     paint[i,200] = 255
    12     paint[i,200+1] = 255
    13     paint[i,200-1] = 255
    14 for i in range(150,250):
    15     paint[250,i] = 255
    16     paint[250+1,i] = 255
    17     paint[250-1,i] = 255
    18 cv2.imshow('paint',paint)
    19 # 完成图片修补 1 src 2 mask
    20 imgDst = cv2.inpaint(img,paint,3,cv2.INPAINT_TELEA)
    21 cv2.imshow('image',imgDst)
    22 cv2.waitKey(0)

    画图的特征图:(即需要修补的部分)

    修补后的图像:

    修补成功!

    4.亮度增强

    测试代码如下:

     1 # encoding:utf-8
     2 import cv2
     3 import numpy as np
     4 img = cv2.imread('image0.jpg',1)
     5 imgInfo = img.shape
     6 height = imgInfo[0]
     7 width = imgInfo[1]
     8 cv2.imshow('src',img)
     9 dst = np.zeros((height,width,3),np.uint8)
    10 for i in range(0,height):
    11     for j in range(0,width):
    12         (b,g,r) = img[i,j]
    13         bb = int(b)+40
    14         rr = int(r)+40
    15         gg = int(g)+40
    16         if bb>255:
    17             bb = 255
    18         if rr>255:
    19             rr = 255
    20         if gg>255:
    21             gg = 255
    22         dst[i,j] = (bb,gg,rr)
    23 cv2.imshow('dst',dst)
    24 cv2.waitKey(0)

    运行结果如下:

    src为原图像:

    dst为亮度增强后的图像:

     另一种方式实现亮度增强,测试代码如下:

     1 import cv2
     2 import numpy as np
     3 img = cv2.imread('image0.jpg',1)
     4 imgInfo = img.shape
     5 height = imgInfo[0]
     6 width = imgInfo[1]
     7 cv2.imshow('src',img)
     8 dst = np.zeros((height,width,3),np.uint8)
     9 for i in range(0,height):
    10     for j in range(0,width):
    11         (b,g,r) = img[i,j]
    12         bb = int(b*1.3)+10
    13         gg = int(g*1.2)+15
    14         if bb>255:
    15             bb = 255
    16         if gg>255:
    17             gg = 255
    18         dst[i,j] = (bb,gg,r)
    19 cv2.imshow('dst',dst)
    20 cv2.waitKey(0)

    亮度增强后的图像为:

    5.磨皮美白

    测试代码如下:

     1 # 双边滤波 磨皮美白
     2 import cv2
     3 import numpy as np
     4 img = cv2.imread('1.jpg',1)
     5 cv2.imshow('src',img)
     6 imgInfo = img.shape
     7 height = imgInfo[0]
     8 width = imgInfo[1]
     9 dst = cv2.bilateralFilter(img,15,35,35)
    10 cv2.imshow('dst',dst)
    11 cv2.waitKey(0)

     测试结果如下:

    src为原图像:

    dst为处理后的图像:

    6.高斯均值滤波

    调用api实现, 测试代码如下:

    1 import cv2
    2 import numpy as np
    3 img = cv2.imread('image11.jpg',1)  # 含有椒盐噪声的发发
    4 cv2.imshow('src',img)
    5 dst = cv2.GaussianBlur(img,(5,5),1.5)
    6 cv2.imshow('dst',dst)
    7 cv2.waitKey(0)

    运行结果如下:

    src为添加了噪声的图像:

    dst为高斯均值滤波后的图像:

    自己实现均值滤波,测试代码如下:

     1 # 均值 模板6*6 用模板6*6求得的均值替代中心值
     2 import cv2
     3 import numpy as np
     4 img = cv2.imread('image11.jpg',1)  # 含有椒盐噪声的发发
     5 cv2.imshow('src',img)
     6 imgInfo = img.shape
     7 height = imgInfo[0]
     8 width = imgInfo[1]
     9 dst = np.zeros((height,width,3),np.uint8)
    10 b = np.zeros(1,np.uint8)
    11 g = np.zeros(1,np.uint8)
    12 r = np.zeros(1,np.uint8)
    13 for i in range(3,height-3):
    14     for j in range(3,width-3):
    15         sum_b = int(0)
    16         sum_g = int(0)
    17         sum_r = int(0)
    18         for m in range(-3,3):
    19             for n in range(-3,3):
    20                 (b,g,r) = img[i+m,j+n]
    21                 sum_b = sum_b+int(b)
    22                 sum_g = sum_g+int(g)
    23                 sum_r = sum_r+int(r)
    24         b = np.uint8(sum_b/36)
    25         g = np.uint8(sum_g/36)
    26         r = np.uint8(sum_r/36)
    27         dst[i,j] = (b,g,r)
    28 cv2.imshow('dst',dst)
    29 cv2.waitKey(0)

    运行结果如下:(处理后的图像)

    7.中值滤波

    测试代码如下:

     1 # 中值滤波 用模板6*6求得的中值替代中心值
     2 import cv2
     3 import numpy as np
     4 img = cv2.imread('image11.jpg',1)  # 含有椒盐噪声的发发
     5 imgInfo = img.shape
     6 height = imgInfo[0]
     7 width = imgInfo[1]
     8 img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
     9 cv2.imshow('src',img)
    10 dst = np.zeros((height,width,3),np.uint8)
    11 collect = np.zeros(9,np.uint8)
    12 for i in range(1,height-2):
    13     for j in range(1,width-2):
    14         k = 0
    15         for m in range(-1,2):
    16             for n in range(-1,2):
    17                 gray = img[i+m,j+n]
    18                 collect[k] = gray
    19                 k = k+1
    20         # 排序
    21         for k in range(0,9):
    22             p1 = collect[k]
    23             for t in range(k+1,9):
    24                 if p1<collect[t]:
    25                     mid = collect[t]
    26                     collect[t] = p1
    27                     p1 = mid
    28         dst[i,j] = collect[4]
    29 cv2.imshow('dst',dst)
    30 cv2.waitKey(0)

    运行结果如下:

    src初始图像:

    dst处理后的图像:

  • 相关阅读:
    挑战编程 uva100 3n+1
    《算法问题实战策略》 BOGGLE
    图论 最短路专辑
    acwing 76. 和为S的连续正数序列
    leetcode 19 删除链表的倒数第N个节点
    水文一篇 汇报下最*的学**况
    acwing 81. 扑克牌的顺子
    Solr基础理论与维护管理快速上手(含查询参数说明)
    Solr基础理论与维护管理快速上手(含查询参数说明)
    利用SolrJ操作solr API完成index操作
  • 原文地址:https://www.cnblogs.com/wydxry/p/10902520.html
Copyright © 2011-2022 走看看