CF1151div2(Round 553)
思路题大赛
A
少考虑了一种情况,到死没想到
B
貌似我随机化50000次,没找到就无解貌似也过了
感觉随随便便乱搞+分类讨论都可以过的样子
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 505;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
int a[N][N];
int b[N][N];
int tot;
int s[N];
int n,m;
inline bool pan(){
for(int i = 1;i <= n;++i)
for(int j = 1;j <= n;++j)
if(b[i][j] != 1) return 0;
return 1;
}
inline bool check(){
if(pan()){
if(n & 1){
for(int i = 1;i <= n;++i) s[++tot] = 1;
return 1;
}
else return 0;
}
}
int main(){
srand(time(0));
n = read(),m = read();
for(int i = 1;i <= n;++i) for(int j = 1;j <= m;++j) a[i][j] = read();
for(int t = 1;t <= 50000;++t){
int now = 0;
for(int i = 1;i < n;++i) s[i] = rand() % m + 1,now ^= a[i][s[i]];
for(int i = 1;i <= m;++i){
if((now ^ a[n][i]) != 0){
s[n] = i;
printf("TAK
");
for(int j = 1;j <= n;++j) printf("%d ",s[j]);
return 0;
}
}
}
printf("NIE
");
return 0;
}
C
辣鸡CF连__int128都不支持
我们将所有的区间分成log块去考虑
每一块的内部其实都是等差数列
我们可以用等差数列求和公式
对于(L,R)就求一下前缀和
另外项数可能很大,一定要%mod(我就是因为这个WA的)
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const LL mod = 1e9 + 7;
inline LL read(){
LL v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
LL L,R;
LL sum[129];
LL shou[129];
inline LL quick(LL x,LL y){
LL res = 1;
while(y){
if(y & 1) res = res * x % mod;
y >>= 1;
x = x * x % mod;
}
return res;
}
LL inv2 = quick(2,mod - 2);
inline LL work(LL x){
if(x == 0) return 0;
LL cnt = 0;
LL gg = 0;
LL ans = 0;
while(gg + (1ll << cnt) <= x){
ans = (ans + sum[cnt]) % mod;
gg += (1ll << cnt);
cnt++;
}
if(gg != x){
LL rest = (x - gg) % mod;
LL rail = (shou[cnt] + (rest - 1) * 2 % mod) % mod;
ans = (ans + (shou[cnt] + rail) % mod * rest % mod * inv2 % mod) % mod;
}
return ans;
}
int main(){
L = read(),R = read();
LL now = 0;
LL base = 0;
LL ji = 1;
LL ou = 2;
long long rr = R;
do{
rr -= (1ll << base);
// printf("%lld
",rr);
if(base & 1){
shou[base] = ou;
sum[base] = (ou + (ou + 2 * (quick(2,base) - 1) % mod) % mod) % mod * quick(2,base) % mod * inv2 % mod;
ou = (ou + 2 * (quick(2,base)) % mod) % mod;
}
else{
shou[base] = ji;
sum[base] = (ji + (ji + 2 * (quick(2,base) - 1) % mod) % mod) % mod * quick(2,base) % mod * inv2 % mod;
ji = (ji + 2 * (quick(2,base)) % mod) % mod;
}
base++;
}while(rr > 0);
// for(int i = 0;i <= base;++i) printf("%lld
",(long long)(sum[i]));
long long ans = ((work(R) - work(L - 1) + mod) % mod + mod) % mod;
printf("%lld
",(long long)ans);
return 0;
}
D
化式子可以发现,只和(a_i-b_i)的值有关
然后就快乐排序算贡献
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const LL mod = 1e9 + 7;
inline LL read(){
LL v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
LL L,R;
LL sum[129];
LL shou[129];
inline LL quick(LL x,LL y){
LL res = 1;
while(y){
if(y & 1) res = res * x % mod;
y >>= 1;
x = x * x % mod;
}
return res;
}
LL inv2 = quick(2,mod - 2);
inline LL work(LL x){
if(x == 0) return 0;
LL cnt = 0;
LL gg = 0;
LL ans = 0;
while(gg + (1ll << cnt) <= x){
ans = (ans + sum[cnt]) % mod;
gg += (1ll << cnt);
cnt++;
}
if(gg != x){
LL rest = (x - gg) % mod;
LL rail = (shou[cnt] + (rest - 1) * 2 % mod) % mod;
ans = (ans + (shou[cnt] + rail) % mod * rest % mod * inv2 % mod) % mod;
}
return ans;
}
int main(){
L = read(),R = read();
LL now = 0;
LL base = 0;
LL ji = 1;
LL ou = 2;
long long rr = R;
do{
rr -= (1ll << base);
// printf("%lld
",rr);
if(base & 1){
shou[base] = ou;
sum[base] = (ou + (ou + 2 * (quick(2,base) - 1) % mod) % mod) % mod * quick(2,base) % mod * inv2 % mod;
ou = (ou + 2 * (quick(2,base)) % mod) % mod;
}
else{
shou[base] = ji;
sum[base] = (ji + (ji + 2 * (quick(2,base) - 1) % mod) % mod) % mod * quick(2,base) % mod * inv2 % mod;
ji = (ji + 2 * (quick(2,base)) % mod) % mod;
}
base++;
}while(rr > 0);
// for(int i = 0;i <= base;++i) printf("%lld
",(long long)(sum[i]));
long long ans = ((work(R) - work(L - 1) + mod) % mod + mod) % mod;
printf("%lld
",(long long)ans);
return 0;
}
E
首先一个小(trick)
树上的连通块数 = 点数 - 边数(本题是链也)
所以答案变成了点数之和减去边数之和
对于一个点(i),他的贡献应该是
[a_i*(n - a_i + 1)
]
就是左端点和右端点的取值都要合法
一条边存在仅当他链接的两个点都存在
[min(a_i,a_{i + 1}) * (n - max(a_i,a_{i + 1}) + 1)
]
所以把这些东西算一算就好了
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 1e5 + 3;
int a[N];
int n;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
int main(){
LL ans = 0;
n = read();
for(int i = 1;i <= n;++i) a[i] = read();
for(int i = 1;i <= n;++i) ans += 1ll * a[i] * (n - a[i] + 1);
for(int i = 1;i < n;++i) ans -= 1ll * min(a[i],a[i + 1]) * (n - max(a[i],a[i + 1]) + 1);
cout << ans;
return 0;
}
F
见这一篇