zoukankan      html  css  js  c++  java
  • sklearn的GridSearchCV例子

    class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score=True)

    1.estimator:

      传入估计器与不需要调参的参数,每一个估计器都需要一个scoring参数。

    2.param_grid:

      需要最优化的参数的取值,值为字典或者列表。

    3.scoring:

      模型评价标准,默认None,这时需要使用score函数,根据所选模型不同,评价准则不同。字符串或者自定义形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。

    4.n_jobs

      n_jobs: 并行数,int:个数,-1:跟CPU核数一致。

    5.refit=True

      默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。

    6.pre_dispatch=‘2*n_jobs’

      指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次。

    from sklearn.datasets import load_iris
    import pandas as pd
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.metrics import classification_report
    
    X,y = load_iris(return_X_y=True)  
    df_X = pd.DataFrame(X,columns=list("ABCD"))
    
    
    #gridSearchCV
    parameters = [{'n_estimators':[10,100,1000],
                   'criterion':['entropy','gini'],
                   'max_depth':[10,50,100,200],
                   'min_samples_split':[2,5,10],
                   'min_weight_fraction_leaf':[0.0,0.1,0.2,0.3,0.4,0.5]}]
    
    parameters = [{'n_estimators':[10,20]}]
    
    #scoring="precision"或者"recall"或者"roc_auc","accuracy"或者None
    
    clf = GridSearchCV(RandomForestClassifier(), parameters,cv=2,scoring="accuracy")
    clf.fit(df_X,y)
    
    clf.cv_results_
    # =============================================================================
    # {'mean_fit_time': array([0.0089916 , 0.01695275]),
    #  'mean_score_time': array([0.00099409, 0.00148273]),
    #  'mean_test_score': array([0.94666667, 0.96      ]),
    #  'mean_train_score': array([0.98666667, 1.        ]),
    #  'param_n_estimators': masked_array(data=[10, 20],
    #               mask=[False, False],
    #         fill_value='?',
    #              dtype=object),
    #  'params': [{'n_estimators': 10}, {'n_estimators': 20}],
    #  'rank_test_score': array([2, 1]),
    #  'split0_test_score': array([0.96, 0.96]),
    #  'split0_train_score': array([1., 1.]),
    #  'split1_test_score': array([0.93333333, 0.96      ]),
    #  'split1_train_score': array([0.97333333, 1.        ]),
    #  'std_fit_time': array([1.01363659e-03, 9.53674316e-07]),
    #  'std_score_time': array([4.17232513e-06, 5.05685806e-04]),
    #  'std_test_score': array([0.01333333, 0.        ]),
    #  'std_train_score': array([0.01333333, 0.        ])}
    # =============================================================================
    clf.best_estimator_
    # =============================================================================
    # RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
    #             max_depth=None, max_features='auto', max_leaf_nodes=None,
    #             min_impurity_decrease=0.0, min_impurity_split=None,
    #             min_samples_leaf=1, min_samples_split=2,
    #             min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=1,
    #             oob_score=False, random_state=None, verbose=0,
    #             warm_start=False)
    # =============================================================================
    
    clf.best_score_
    # =============================================================================
    # Out[42]: 0.96
    # 
    # =============================================================================
    
    clf.best_params_
    
    # =============================================================================
    # Out[43]: {'n_estimators': 20}
    # 
    # =============================================================================
    clf.grid_scores_
    
    # =============================================================================
    # [mean: 0.94667, std: 0.01333, params: {'n_estimators': 10},
    #  mean: 0.96000, std: 0.00000, params: {'n_estimators': 20}]
    # =============================================================================

     

     

     

     

     

     

     

     

     

     

     

     

    参考:http://blog.51cto.com/emily18/2088128

     

  • 相关阅读:
    视频4K技术的解读
    C语言野指针
    获取一个整数所有的质因数(C语言实现)
    乘法口诀表(C语言实现)
    完全平方数(C语言实现)
    Socket网络编程系列教程序
    求1-2/3+3/5-4/7+......49/97和(C语言实现)
    反射
    Cloneable接口和Object的clone()方法
    Comparable和Comparator的区别
  • 原文地址:https://www.cnblogs.com/wzdLY/p/9674133.html
Copyright © 2011-2022 走看看