题目大意:给定一个 N*M 的棋盘,有一些格子禁止放棋子。问棋盘上最多能放多少个不能互相攻击的骑士(国际象棋的“骑士”,类似于中国象棋的“马”,按照“日”字攻击,但没有中国象棋“别马腿”的规则)。N, M<=100。
题解:相同的道理,放置一个马就在两个点之间连一条边。求的是二分图的最大独立集,即:二分图点数减去最小点覆盖数即可。
代码如下
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={2,2,-2,-2,1,1,-1,-1};
const int dy[]={1,-1,1,-1,2,-2,2,-2};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=1e4+10;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*--------------------------------------------------------*/
vector<int> G[maxn];
int match[maxn];bool vis[maxn];
int n,m,t;
bool mpp[101][101];
inline int get(int i,int j){return m*(i-1)+j;}
inline bool right(int i,int j){return i>=1&&i<=n&&j>=1&&j<=m&&!mpp[i][j];}
void read_and_parse(){
n=read(),m=read(),t=read();
for(int i=1,x,y;i<=t;i++)x=read(),y=read(),mpp[x][y]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)if(!mpp[i][j]&&!((i+j)&1))
for(int k=0;k<8;k++)
if(right(i+dx[k],j+dy[k])){
int x=get(i,j),y=get(i+dx[k],j+dy[k]);
G[x].pb(y);
}
}
bool dfs(int u){
for(auto v:G[u])if(!vis[v]){
vis[v]=1;
if(!match[v]||dfs(match[v])){
match[v]=u;return 1;
}
}
return 0;
}
void solve(){
int ans=n*m-t;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(((i+j)&1)||mpp[i][j])continue;
memset(vis,0,sizeof(vis));
if(dfs(get(i,j)))--ans;
}
printf("%d
",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}