zoukankan      html  css  js  c++  java
  • HDU

    Problem Description
    Given a 3-dimension ellipsoid(椭球面)

    your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as 
     

    Input
    There are multiple test cases. Please process till EOF.

    For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double.
     

    Output
    For each test contains one line. Describes the minimal distance. Answer will be considered as correct if their absolute error is less than 10-5.
     

    Sample Input
    1 0.04 0.01 0 0 0
     

    Sample Output
    1.0000000
     

    Source

    题意:求椭圆上离圆心近期的点的距离。

    思路:模拟退火法,学着网上写的

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int inf = 1e8;
    const double eps = 1e-8;
    
    const int dx[8] = {0,0,1,-1,1,-1,1,-1};
    const int dy[8] = {1,-1,0,0,1,1,-1,-1};
    double a, b, c, d, e, f;
    
    double dis(double x, double y, double z) {
    	return sqrt(x * x + y * y + z * z);
    }
    
    double calz(double x, double y) {
    	double A = c;
    	double B = d * y + e * x;
    	double C = f * x * y + a * x * x + b * y * y - 1.0;
    	double delta = B * B - 4.0 * A * C;
    
    	if (delta < 0.0) return inf+10.0;
    	delta = sqrt(delta);
    	double z1 = (-B + delta) / (2.0 * A);
    	double z2 = (-B - delta) / (2.0 * A);
    	if (dis(x, y, z1) < dis(x, y, z2))
    		return z1;
    	return z2;
    }
    
    double solve() {
    	double x = 0, y = 0, z = sqrt(1.0/c);
    	double step = 1.0, rate = 0.99;
    	while (step > eps) {
    		for (int k = 0; k < 8; k++) {
    			double nx = x + step * dx[k];
    			double ny = y + step * dy[k];
    			double nz = calz(nx, ny);
    
    			if (nz >= inf) continue;
    			if (dis(nx, ny, nz) < dis(x, y, z)) {
    				x = nx;
    				y = ny;
    				z = nz;
    			}
    		}
    		step *= rate;
    	}
    	return dis(x, y, z);
    }
    
    int main() {
    	while (scanf("%lf%lf%lf%lf%lf%lf", &a, &b, &c, &d, &e, &f) != EOF) {
    		printf("%.7lf
    ", solve());
    	}	
    	return 0;
    }




  • 相关阅读:
    0401-服务注册与发现、Eureka简介
    001-OSI七层模型,TCP/IP五层模型
    云原生应用开发12-Factors
    0301-服务提供者与服务消费者
    0201-开始使用Spring Cloud实战微服务准备工作
    0107-将Monolith重构为微服务
    0106-选择微服务部署策略
    0105-微服务的事件驱动的数据管理
    0104-微服务体系结构中的服务发现
    0103-微服务架构中的进程间通信
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/6775285.html
Copyright © 2011-2022 走看看