zoukankan      html  css  js  c++  java
  • HDU

    Problem Description
    Given a 3-dimension ellipsoid(椭球面)

    your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as 
     

    Input
    There are multiple test cases. Please process till EOF.

    For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double.
     

    Output
    For each test contains one line. Describes the minimal distance. Answer will be considered as correct if their absolute error is less than 10-5.
     

    Sample Input
    1 0.04 0.01 0 0 0
     

    Sample Output
    1.0000000
     

    Source

    题意:求椭圆上离圆心近期的点的距离。

    思路:模拟退火法,学着网上写的

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int inf = 1e8;
    const double eps = 1e-8;
    
    const int dx[8] = {0,0,1,-1,1,-1,1,-1};
    const int dy[8] = {1,-1,0,0,1,1,-1,-1};
    double a, b, c, d, e, f;
    
    double dis(double x, double y, double z) {
    	return sqrt(x * x + y * y + z * z);
    }
    
    double calz(double x, double y) {
    	double A = c;
    	double B = d * y + e * x;
    	double C = f * x * y + a * x * x + b * y * y - 1.0;
    	double delta = B * B - 4.0 * A * C;
    
    	if (delta < 0.0) return inf+10.0;
    	delta = sqrt(delta);
    	double z1 = (-B + delta) / (2.0 * A);
    	double z2 = (-B - delta) / (2.0 * A);
    	if (dis(x, y, z1) < dis(x, y, z2))
    		return z1;
    	return z2;
    }
    
    double solve() {
    	double x = 0, y = 0, z = sqrt(1.0/c);
    	double step = 1.0, rate = 0.99;
    	while (step > eps) {
    		for (int k = 0; k < 8; k++) {
    			double nx = x + step * dx[k];
    			double ny = y + step * dy[k];
    			double nz = calz(nx, ny);
    
    			if (nz >= inf) continue;
    			if (dis(nx, ny, nz) < dis(x, y, z)) {
    				x = nx;
    				y = ny;
    				z = nz;
    			}
    		}
    		step *= rate;
    	}
    	return dis(x, y, z);
    }
    
    int main() {
    	while (scanf("%lf%lf%lf%lf%lf%lf", &a, &b, &c, &d, &e, &f) != EOF) {
    		printf("%.7lf
    ", solve());
    	}	
    	return 0;
    }




  • 相关阅读:
    低功耗计算机视觉技术前沿,四大方向,追求更小、更快、更高效
    ELECTRA中文预训练模型开源,性能依旧媲美BERT
    局部敏感哈希源代码-python
    利用局部敏感哈希改进推荐系统实时性
    局部敏感哈希算法介绍
    为什么要用局部敏感哈希
    多采用panda的数据处理方式
    delphi:文件操作
    delphi:常用函数
    delphi:打印日志
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/6775285.html
Copyright © 2011-2022 走看看