zoukankan      html  css  js  c++  java
  • Eddy's digital Roots

    http://acm.hdu.edu.cn/showproblem.php?pid=1163

    Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5203    Accepted Submission(s): 2910


    Problem Description
    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.
     

    Input
    The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
     

    Output
    Output n^n's digital root on a separate line of the output.
     

    Sample Input
    2 4 0
     

    Sample Output
    4 4
     

    Author
    eddy
     
    提醒一下。由于最后的答案是每一位相加,所以在前面计算的过程中个位和十位是没啥差别的。能够先相加起来在计算也是对的。自己体会。当然这一题也能够同九余数定理。

    #include <cstdio>
    int fun(int n)
    {
        int ans=1;
        for(int i=0;i<n;i++){
            ans*=n;
            while(ans>=10){
            int sum=0;
            while(ans){
                sum+=ans%10;
                ans/=10;
               }
            ans=sum;
            }
        }
        return ans;
    }
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF){
            if(n==0)break;
            printf("%d
    ",fun(n));
        }
        return 0;
    }


  • 相关阅读:
    cidaemon.exe过程cpu入住率和关闭cidaemon.exe加工方法
    .net 一些常用的工具来破解
    关于加密和解密的设计思路
    oncopy和onpaste
    来迁移数据管道
    使用JSP实现商场购物车模块
    2014在辛星Javascript口译科
    Lua学习 1) —— Android呼叫变量值和分配
    HttpSQS
    手机后端开发
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/7132538.html
Copyright © 2011-2022 走看看