zoukankan      html  css  js  c++  java
  • E

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

    We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
    Figure A Sample Input of Radar Installations

    Input

    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
    The input is terminated by a line containing pair of zeros

    Output

    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

    Sample Input

    3 2
    1 2
    -3 1
    2 1

    1 2
    0 2

    0 0

    Sample Output

    Case 1: 2
    Case 2: 1

    想要按照最少的雷达站,先把x排序,如何判断下一个的最左边是不是在之前的雷达的最右边的右边,是就要重新按一个雷达站;

    要注意,如果下一个的最右边在之前雷达的左边,说明安装的位置要在这里的最右边;

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<cmath>
    #include<string.h>
    #include<algorithm>
    #define sf scanf
    #define pf printf
    #define cl clear()
    #define pb push_back
    #define mm(a,b) memset((a),(b),sizeof(a))
    #include<vector>
    const double pi=acos(-1.0);
    typedef __int64 ll;
    typedef long double ld;
    const ll mod=1e9+7;
    using namespace std;
    int n,d,bits=1;
    double wzl(int y)
    {
    	double x=d*d-y*y;
    	return sqrt(x);
    }
    int a[1005],b[1005];
    int main()
    {
    	
    	while(1)
    	{
    		mm(a,0);
    		mm(b,0);
    		sf("%d%d",&n,&d);
    		if(n==0)
    		return 0;
    		int temp=0;
    		for(int i=0;i<n;i++)
    		{
    			sf("%d%d",&a[i] ,&b[i] );	
    			if(b[i]>d) 
    			temp=1;
    		}
    		if(temp) 
    		{
    			pf("Case %d: -1
    ",bits++);
    			continue;
    		}
    		for(int i=0;i<n-1;i++)
    		for(int j=0;j<n-i-1;j++)
    		{
    			if(a[j]>a[j+1])
    			{
    				int w=a[j];
    				a[j]=a[j+1];
    				a[j+1]=w;
    				w=b[j];
    				b[j]=b[j+1];
    				b[j+1]=w;
    			}
    		}
    		int sum=1;
    		double last=a[0]+wzl(b[0]),left,right;
    		for(int i=1;i<n;i++)
    		{
    			left=a[i]-wzl(b[i]);
    			right=a[i]+wzl(b[i]);
    			if(left>last)
    			{
    				sum++;
    				last=right;
    			}else if(right<last)
    			{
    				last=right;
    			}
    		}
    		pf("Case %d: %d
    ",bits++,sum);
    	}
    }
    
  • 相关阅读:
    SpringMVC是什么?
    SpringMVC工作原理
    SQL给字段加上统一的某个字符
    把数据库里的标签去掉
    Windows通过DOS命令进入MYSQL的方法
    mysql添加字段
    sqlserver查询最接近的记录
    LIST 排序
    Tsk4.5异步
    认识和使用Task
  • 原文地址:https://www.cnblogs.com/wzl19981116/p/9350032.html
Copyright © 2011-2022 走看看