zoukankan      html  css  js  c++  java
  • hdu 5086 Revenge of Segment Tree(BestCoder Round #16)

    Revenge of Segment Tree

                                                             Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                                                                                       Total Submission(s): 420    Accepted Submission(s): 180


    Problem Description
    In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
    A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
    ---Wikipedia

    Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
     

    Input
    The first line contains a single integer T, indicating the number of test cases. 

    Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.

    [Technical Specification]
    1. 1 <= T <= 10
    2. 1 <= N <= 447 000
    3. 0 <= Ai <= 1 000 000 000
     

    Output
    For each test case, output the answer mod 1 000 000 007.
     

    Sample Input
    2 1 2 3 1 2 3
     

    Sample Output
    2 20
    Hint
    For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
     

    求一段序列的全部连续子序列的和。
    对于序列中的第i个,下标从0開始。在第ai个前有i+1个数(包含它自己),在ai个后有n-i个(包含它自己),所以ai
    共出现(i+1)*(n-i)次。


    官方题解:
    考虑每一个数出如今多少个子序列之中。如果第i个数为Ai。区间为[L,R]

    那么包括Ai的区间满足LiRi。累加(L+1)(NR)A[i]就能够了。

    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    long long mod=1000000000+7;
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            long long n;
            long long ans=0;
            long long a;
            scanf("%I64d",&n);
            for(int i=0;i<n;i++)
            {
                scanf("%I64d",&a);
                ans=(ans+(((a*(i+1)%mod)*(n-i))%mod))%mod;
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    




  • 相关阅读:
    tomcat页面跳转问题
    linux shell脚本攻略总结
    nginx中配置tomcat
    centos中文输入法支持
    esxi创建centos系统
    linux日常总结
    你不知道的编码软件排行榜
    Beyond Compare切换比较会话过滤模式的方法
    用Beyond Compare找代码bug的方法
    文件对比工具比较表格时怎么显示行号
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/6717841.html
Copyright © 2011-2022 走看看