zoukankan      html  css  js  c++  java
  • scikit-learn:3.4. Model persistence

    參考:http://scikit-learn.org/stable/modules/model_persistence.html


    训练了模型之后,我们希望能够保存下来,遇到新样本时直接使用已经训练好的保存了的模型。而不用又一次再训练模型。

    本节介绍pickle在保存模型方面的应用。

    After training a scikit-learn model, it is desirable to have a way to persist the model for future use without having to retrain. The following section gives you an example of how to persist a model with pickle. We’ll also review a few security and maintainability issues when working with pickle serialization.)


    1、persistence example

    It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

    >>> from sklearn import svm
    >>> from sklearn import datasets
    >>> clf = svm.SVC()
    >>> iris = datasets.load_iris()
    >>> X, y = iris.data, iris.target
    >>> clf.fit(X, y)  
    SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
      kernel='rbf', max_iter=-1, probability=False, random_state=None,
      shrinking=True, tol=0.001, verbose=False)
    
    >>> import pickle
    >>> s = pickle.dumps(clf)
    >>> clf2 = pickle.loads(s)
    >>> clf2.predict(X[0])
    array([0])
    >>> y[0]
    0

    有些情况下(more efficient on objects that carry large numpy arrays internally使用joblib’s 取代pickle (joblib.dump & joblib.load)。之后我们甚至能够在还有一个pathon程序中load保存好的模型(pickle也能够。。。)

    >>> from sklearn.externals import joblib
    >>> <strong>joblib.dump(clf, 'filename.pkl') 
    >>> clf = joblib.load('filename.pkl') </strong>

    Note

     

    joblib.dump returns a list of filenames. Each individual numpy array contained in the clf object is serialized as a separate file on the filesystem. All files are required in the same folder when reloading the model with joblib.load.



    2、security & maintainability limitations

    pickle (and joblib by extension)在maintainability and security方面有些问题。由于:

    • Never unpickle untrusted data
    • Models saved in one version of scikit-learn might not load in another version.
    为了可以在scikit-learn未来的版本号中重构已保存好的模型,须要pickled时加入一些metadata:

    • The training data, e.g. a reference to a immutable snapshot
    • The python source code used to generate the model
    • The versions of scikit-learn and its dependencies
    • The cross validation score obtained on the training data
    further discussion,refer this talk by Alex Gaynor.



  • 相关阅读:
    高效编写微信小程序
    故事怎么讲才有逼格?
    基于RESTful API 怎么设计用户权限控制?
    【开源访谈】腾讯贺嘉:从小程序谈起,开发者该如何跟进新技术?
    图标字体设计
    微信小程序即将上线,创业者机会在哪里?
    微信小程序开发学习资料
    PC 微信扫码登陆
    一张二维码同时集成微信、支付宝支付
    支付宝Wap支付你了解多少?
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/6807532.html
Copyright © 2011-2022 走看看