因为想梳理data_layer的过程。整理一半发现有几个很重要的头文件就是题目列出的这几个:
追本溯源,先从根基開始学起。这里面都是些什么鬼呢?
common类
命名空间的使用:google、cv、caffe{boost、std}。
然后在项目中就能够任意使用google、opencv、c++的标准库、以及c++高级库boost。
caffe採用单例模式封装boost的智能指针(caffe的灵魂)、std一些标准的使用方法、重要的初始化内容(随机数生成器的内容以及google的gflags和glog的初始化)。
提供一个统一的接口。方便移植和开发。为毛使用随机数?我也不是非常清楚,知乎的一个解释:
随机数在caffe中是很重要的,最重要的应用是权值的初始化,如高斯、xavier等。初始化的好坏直接影响终于的训练结果,其它的应用如训练图像的随机crop和mirror、dropout层的神经元的选择。RNG类是对Boost以及STL中随机数函数的封装,以方便使用。至于想每次产生同样的随机数,仅仅要设定固定的种子就可以。见caffe.proto中random_seed的定义:
// If non-negative, the seed with which the Solver will initialize the Caffe
// random number generator -- useful for reproducible results. Otherwise,
// (and by default) initialize using a seed derived from the system clock.
optional int64 random_seed = 20 [default = -1];
头文件:
#ifndef CAFFE_COMMON_HPP_ #define CAFFE_COMMON_HPP_ #include <boost/shared_ptr.hpp> #include <gflags/gflags.h> #include <glog/logging.h> #include <climits> #include <cmath> #include <fstream> // NOLINT(readability/streams) #include <iostream> // NOLINT(readability/streams) #include <map> #include <set> #include <sstream> #include <string> #include <utility> // pair #include <vector> #include "caffe/util/device_alternate.hpp" // Convert macro to string // 将宏转换为字符串 #define STRINGIFY(m) #m #define AS_STRING(m) STRINGIFY(m) // gflags 2.1 issue: namespace google was changed to gflags without warning. // Luckily we will be able to use GFLAGS_GFLAGS_H_ to detect if it is version // 2.1. If yes, we will add a temporary solution to redirect the namespace. // TODO(Yangqing): Once gflags solves the problem in a more elegant way, let's // remove the following hack. // 检測gflags2.1 #ifndef GFLAGS_GFLAGS_H_ namespace gflags = google; #endif // GFLAGS_GFLAGS_H_ // Disable the copy and assignment operator for a class. // 禁止某个类通过构造函数直接初始化还有一个类 // 禁止某个类通过赋值来初始化还有一个类 #define DISABLE_COPY_AND_ASSIGN(classname) private: classname(const classname&); classname& operator=(const classname&) // Instantiate a class with float and double specifications. #define INSTANTIATE_CLASS(classname) char gInstantiationGuard##classname; template class classname<float>; template class classname<double> // 初始化GPU的前向传播函数 #define INSTANTIATE_LAYER_GPU_FORWARD(classname) template void classname<float>::Forward_gpu( const std::vector<Blob<float>*>& bottom, const std::vector<Blob<float>*>& top); template void classname<double>::Forward_gpu( const std::vector<Blob<double>*>& bottom, const std::vector<Blob<double>*>& top); // 初始化GPU的反向传播函数 #define INSTANTIATE_LAYER_GPU_BACKWARD(classname) template void classname<float>::Backward_gpu( const std::vector<Blob<float>*>& top, const std::vector<bool>& propagate_down, const std::vector<Blob<float>*>& bottom); template void classname<double>::Backward_gpu( const std::vector<Blob<double>*>& top, const std::vector<bool>& propagate_down, const std::vector<Blob<double>*>& bottom) // 初始化GPU的前向反向传播函数 #define INSTANTIATE_LAYER_GPU_FUNCS(classname) INSTANTIATE_LAYER_GPU_FORWARD(classname); INSTANTIATE_LAYER_GPU_BACKWARD(classname) // A simple macro to mark codes that are not implemented, so that when the code // is executed we will see a fatal log. // NOT_IMPLEMENTED实际上调用的LOG(FATAL) << "Not Implemented Yet" #define NOT_IMPLEMENTED LOG(FATAL) << "Not Implemented Yet" // See PR #1236 namespace cv { class Mat; } /* Caffe类里面有个RNG。RNG这个类里面还有个Generator类在RNG里面会用到Caffe里面的Get()函数来获取一个新的Caffe类的实例。然后RNG里面用到了Generator。cpp文件:Generator是实际产生随机数的。 */ namespace caffe { // We will use the boost shared_ptr instead of the new C++11 one mainly // because cuda does not work (at least now) well with C++11 features. using boost::shared_ptr; // Common functions and classes from std that caffe often uses. using std::fstream; using std::ios; //using std::isnan;//vc++的编译器不支持这两个函数 //using std::isinf; using std::iterator; using std::make_pair; using std::map; using std::ostringstream; using std::pair; using std::set; using std::string; using std::stringstream; using std::vector; // A global initialization function that you should call in your main function. // Currently it initializes google flags and google logging. void GlobalInit(int* pargc, char*** pargv); // A singleton class to hold common caffe stuff, such as the handler that // caffe is going to use for cublas, curand, etc. class Caffe { public: ~Caffe(); // Thread local context for Caffe. Moved to common.cpp instead of // including boost/thread.hpp to avoid a boost/NVCC issues (#1009, #1010) // on OSX. Also fails on Linux with CUDA 7.0.18. //Get函数利用Boost的局部线程存储功能实现 static Caffe& Get(); //Brew就是CPU,GPU的枚举类型,这个名字是不是来自Homebrew???Mac的软件包管理器,我猜的。
。。。 enum Brew { CPU, GPU }; // This random number generator facade hides boost and CUDA rng // implementation from one another (for cross-platform compatibility). class RNG { public: RNG();//利用系统的熵池或者时间来初始化RNG内部的generator_ explicit RNG(unsigned int seed); explicit RNG(const RNG&); RNG& operator=(const RNG&); void* generator(); private: class Generator; shared_ptr<Generator> generator_; }; // Getters for boost rng, curand, and cublas handles inline static RNG& rng_stream() { if (!Get().random_generator_) { Get().random_generator_.reset(new RNG()); } return *(Get().random_generator_); } #ifndef CPU_ONLY// GPU inline static cublasHandle_t cublas_handle() { return Get().cublas_handle_; }// cublas的句柄 inline static curandGenerator_t curand_generator() {//curandGenerator句柄 return Get().curand_generator_; } #endif //以下这一块就是设置CPU和GPU以及训练的时候线程并行数目吧 // Returns the mode: running on CPU or GPU. inline static Brew mode() { return Get().mode_; } // The setters for the variables // Sets the mode. It is recommended that you don't change the mode halfway // into the program since that may cause allocation of pinned memory being // freed in a non-pinned way, which may cause problems - I haven't verified // it personally but better to note it here in the header file. inline static void set_mode(Brew mode) { Get().mode_ = mode; } // Sets the random seed of both boost and curand static void set_random_seed(const unsigned int seed); // Sets the device. Since we have cublas and curand stuff, set device also // requires us to reset those values. static void SetDevice(const int device_id); // Prints the current GPU status. static void DeviceQuery(); // Parallel training info inline static int solver_count() { return Get().solver_count_; } inline static void set_solver_count(int val) { Get().solver_count_ = val; } inline static bool root_solver() { return Get().root_solver_; } inline static void set_root_solver(bool val) { Get().root_solver_ = val; } protected: #ifndef CPU_ONLY cublasHandle_t cublas_handle_;// cublas的句柄 curandGenerator_t curand_generator_;// curandGenerator句柄 #endif shared_ptr<RNG> random_generator_; Brew mode_; int solver_count_; bool root_solver_; private: // The private constructor to avoid duplicate instantiation. //避免实例化 Caffe(); // 禁止caffe这个类被复制构造函数和赋值进行构造 DISABLE_COPY_AND_ASSIGN(Caffe); }; } // namespace caffe #endif // CAFFE_COMMON_HPP_
#include <boost/thread.hpp> #include <glog/logging.h> #include <cmath> #include <cstdio> #include <ctime> #include "caffe/common.hpp" #include "caffe/util/rng.hpp" namespace caffe { // Make sure each thread can have different values. // boost::thread_specific_ptr是线程局部存储机制 // 一開始的值是NULL static boost::thread_specific_ptr<Caffe> thread_instance_; Caffe& Caffe::Get() { if (!thread_instance_.get()) {// 假设当前线程没有caffe实例 thread_instance_.reset(new Caffe());// 则新建一个caffe的实例并返回 } return *(thread_instance_.get()); } // random seeding // linux下的熵池下获取随机数的种子 int64_t cluster_seedgen(void) { int64_t s, seed, pid; FILE* f = fopen("/dev/urandom", "rb"); if (f && fread(&seed, 1, sizeof(seed), f) == sizeof(seed)) { fclose(f); return seed; } LOG(INFO) << "System entropy source not available, " "using fallback algorithm to generate seed instead."; if (f) fclose(f); // 採用传统的基于时间来生成随机数种子 pid = getpid(); s = time(NULL); seed = std::abs(((s * 181) * ((pid - 83) * 359)) % 104729); return seed; } // 初始化gflags和glog void GlobalInit(int* pargc, char*** pargv) { // Google flags. ::gflags::ParseCommandLineFlags(pargc, pargv, true); // Google logging. ::google::InitGoogleLogging(*(pargv)[0]); // Provide a backtrace on segfault. ::google::InstallFailureSignalHandler(); } #ifdef CPU_ONLY // CPU-only Caffe. Caffe::Caffe() : random_generator_(), mode_(Caffe::CPU),// shared_ptr<RNG> random_generator_; Brew mode_; solver_count_(1), root_solver_(true) { }// int solver_count_; bool root_solver_; Caffe::~Caffe() { } // 手动设定随机数生成器的种子 void Caffe::set_random_seed(const unsigned int seed) { // RNG seed Get().random_generator_.reset(new RNG(seed)); <span style="font-family:Microsoft YaHei;">}</span> void Caffe::SetDevice(const int device_id) { NO_GPU; } void Caffe::DeviceQuery() { NO_GPU; } // 定义RNG内部的Generator类 class Caffe::RNG::Generator { public: Generator() : rng_(new caffe::rng_t(cluster_seedgen())) {}// linux下的熵池生成随机数种子,注意typedef boost::mt19937 rng_t;这个在utils/rng.hpp头文件中面 explicit Generator(unsigned int seed) : rng_(new caffe::rng_t(seed)) {}// 採用给定的种子初始化 caffe::rng_t* rng() { return rng_.get(); }// 属性 private: shared_ptr<caffe::rng_t> rng_;// 内部变量 }; // 实现RNG内部的构造函数 Caffe::RNG::RNG() : generator_(new Generator()) { } Caffe::RNG::RNG(unsigned int seed) : generator_(new Generator(seed)) { } // 实现RNG内部的运算符重载 Caffe::RNG& Caffe::RNG::operator=(const RNG& other) { generator_ = other.generator_; return *this; } void* Caffe::RNG::generator() { return static_cast<void*>(generator_->rng()); } #else // Normal GPU + CPU Caffe. // 构造函数,初始化cublas和curand库的句柄 Caffe::Caffe() : cublas_handle_(NULL), curand_generator_(NULL), random_generator_(), mode_(Caffe::CPU), solver_count_(1), root_solver_(true) { // Try to create a cublas handler, and report an error if failed (but we will // keep the program running as one might just want to run CPU code). // 初始化cublas并获得句柄 if (cublasCreate(&cublas_handle_) != CUBLAS_STATUS_SUCCESS) { LOG(ERROR) << "Cannot create Cublas handle. Cublas won't be available."; } // Try to create a curand handler. if (curandCreateGenerator(&curand_generator_, CURAND_RNG_PSEUDO_DEFAULT) != CURAND_STATUS_SUCCESS || curandSetPseudoRandomGeneratorSeed(curand_generator_, cluster_seedgen()) != CURAND_STATUS_SUCCESS) { LOG(ERROR) << "Cannot create Curand generator. Curand won't be available."; } } Caffe::~Caffe() { // 销毁句柄 if (cublas_handle_) CUBLAS_CHECK(cublasDestroy(cublas_handle_)); if (curand_generator_) { CURAND_CHECK(curandDestroyGenerator(curand_generator_)); } } // 初始化CUDA的随机数种子以及cpu的随机数种子 void Caffe::set_random_seed(const unsigned int seed) { // Curand seed static bool g_curand_availability_logged = false;// 推断是否log了curand的可用性。假设没有则log一次,log之后则再也不log。用的是静态变量 if (Get().curand_generator_) { // CURAND_CHECK见/utils/device_alternate.hpp中的宏定义 CURAND_CHECK(curandSetPseudoRandomGeneratorSeed(curand_generator(), seed)); CURAND_CHECK(curandSetGeneratorOffset(curand_generator(), 0)); } else { if (!g_curand_availability_logged) { LOG(ERROR) << "Curand not available. Skipping setting the curand seed."; g_curand_availability_logged = true; } } // RNG seed // CPU code Get().random_generator_.reset(new RNG(seed)); } // 设置GPU设备并初始化句柄以及随机数种子 void Caffe::SetDevice(const int device_id) { int current_device; CUDA_CHECK(cudaGetDevice(¤t_device));// 获取当前设备id if (current_device == device_id) { return; } // The call to cudaSetDevice must come before any calls to Get, which // may perform initialization using the GPU. // 在Get之前必须先运行cudasetDevice函数 CUDA_CHECK(cudaSetDevice(device_id)); // 清理曾经的句柄 if (Get().cublas_handle_) CUBLAS_CHECK(cublasDestroy(Get().cublas_handle_)); if (Get().curand_generator_) { CURAND_CHECK(curandDestroyGenerator(Get().curand_generator_)); } // 创建新句柄 CUBLAS_CHECK(cublasCreate(&Get().cublas_handle_)); CURAND_CHECK(curandCreateGenerator(&Get().curand_generator_, CURAND_RNG_PSEUDO_DEFAULT)); // 设置随机数种子 CURAND_CHECK(curandSetPseudoRandomGeneratorSeed(Get().curand_generator_, cluster_seedgen())); } // 获取设备信息 void Caffe::DeviceQuery() { cudaDeviceProp prop; int device; if (cudaSuccess != cudaGetDevice(&device)) { printf("No cuda device present. "); return; } // #define CUDA_CHECK(condition) /* Code block avoids redefinition of cudaError_t error */ //do { // cudaError_t error = condition; // CHECK_EQ(error, cudaSuccess) << " " << cudaGetErrorString(error); //} while (0) CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); LOG(INFO) << "Device id: " << device; LOG(INFO) << "Major revision number: " << prop.major; LOG(INFO) << "Minor revision number: " << prop.minor; LOG(INFO) << "Name: " << prop.name; LOG(INFO) << "Total global memory: " << prop.totalGlobalMem; LOG(INFO) << "Total shared memory per block: " << prop.sharedMemPerBlock; LOG(INFO) << "Total registers per block: " << prop.regsPerBlock; LOG(INFO) << "Warp size: " << prop.warpSize; LOG(INFO) << "Maximum memory pitch: " << prop.memPitch; LOG(INFO) << "Maximum threads per block: " << prop.maxThreadsPerBlock; LOG(INFO) << "Maximum dimension of block: " << prop.maxThreadsDim[0] << ", " << prop.maxThreadsDim[1] << ", " << prop.maxThreadsDim[2]; LOG(INFO) << "Maximum dimension of grid: " << prop.maxGridSize[0] << ", " << prop.maxGridSize[1] << ", " << prop.maxGridSize[2]; LOG(INFO) << "Clock rate: " << prop.clockRate; LOG(INFO) << "Total constant memory: " << prop.totalConstMem; LOG(INFO) << "Texture alignment: " << prop.textureAlignment; LOG(INFO) << "Concurrent copy and execution: " << (prop.deviceOverlap ? "Yes" : "No"); LOG(INFO) << "Number of multiprocessors: " << prop.multiProcessorCount; LOG(INFO) << "Kernel execution timeout: " << (prop.kernelExecTimeoutEnabled ? "Yes" : "No"); return; } class Caffe::RNG::Generator { public: Generator() : rng_(new caffe::rng_t(cluster_seedgen())) {} explicit Generator(unsigned int seed) : rng_(new caffe::rng_t(seed)) {} caffe::rng_t* rng() { return rng_.get(); } private: shared_ptr<caffe::rng_t> rng_; }; Caffe::RNG::RNG() : generator_(new Generator()) { } Caffe::RNG::RNG(unsigned int seed) : generator_(new Generator(seed)) { } Caffe::RNG& Caffe::RNG::operator=(const RNG& other) { generator_.reset(other.generator_.get()); return *this; } void* Caffe::RNG::generator() { return static_cast<void*>(generator_->rng()); } // cublas的geterrorstring const char* cublasGetErrorString(cublasStatus_t error) { switch (error) { case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; #if CUDA_VERSION >= 6000 case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; #endif #if CUDA_VERSION >= 6050 case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR"; #endif } return "Unknown cublas status"; } // curand的getlasterrorstring const char* curandGetErrorString(curandStatus_t error) { switch (error) { case CURAND_STATUS_SUCCESS: return "CURAND_STATUS_SUCCESS"; case CURAND_STATUS_VERSION_MISMATCH: return "CURAND_STATUS_VERSION_MISMATCH"; case CURAND_STATUS_NOT_INITIALIZED: return "CURAND_STATUS_NOT_INITIALIZED"; case CURAND_STATUS_ALLOCATION_FAILED: return "CURAND_STATUS_ALLOCATION_FAILED"; case CURAND_STATUS_TYPE_ERROR: return "CURAND_STATUS_TYPE_ERROR"; case CURAND_STATUS_OUT_OF_RANGE: return "CURAND_STATUS_OUT_OF_RANGE"; case CURAND_STATUS_LENGTH_NOT_MULTIPLE: return "CURAND_STATUS_LENGTH_NOT_MULTIPLE"; case CURAND_STATUS_DOUBLE_PRECISION_REQUIRED: return "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"; case CURAND_STATUS_LAUNCH_FAILURE: return "CURAND_STATUS_LAUNCH_FAILURE"; case CURAND_STATUS_PREEXISTING_FAILURE: return "CURAND_STATUS_PREEXISTING_FAILURE"; case CURAND_STATUS_INITIALIZATION_FAILED: return "CURAND_STATUS_INITIALIZATION_FAILED"; case CURAND_STATUS_ARCH_MISMATCH: return "CURAND_STATUS_ARCH_MISMATCH"; case CURAND_STATUS_INTERNAL_ERROR: return "CURAND_STATUS_INTERNAL_ERROR"; } return "Unknown curand status"; } #endif // CPU_ONLY } // namespace caffe