zoukankan      html  css  js  c++  java
  • Android应用开发:网络工具——Volley(二)

    引言

    Android应用开发:网络工具——Volley(一)中结合Cloudant服务介绍了Volley的一般使用方法。当中包括了两种请求类型StringRequest和JsonObjectRequest。一般的请求任务相信都能够通过他们完毕了,只是在千变万化的网络编程中,我们还是希望能够对请求类型、过程等步骤进行全然的把控。本文就从Volley源代码角度来分析一下。一个网络请求在Volley中是怎样运作的。也能够看作网络请求在Volley中的生命周期。


    源头RequestQueue


    在使用Volley前,必须有一个网络请求队列来承载请求,所以先分析一下这个请求队列是怎样申请,假设运作的。

    在Volley.java中:

        /**
          * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
          *
          * @param context A {@link Context} to use for creating the cache dir.
          * @param stack An {@link HttpStack} to use for the network, or null for default.
          * @return A started {@link RequestQueue} instance.
          */
         public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
             File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
    
             String userAgent = "volley/0";
             try {
                 String packageName = context.getPackageName();
                 PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
                 userAgent = packageName + "/" + info.versionCode;
             } catch (NameNotFoundException e) {
             }
    
             if (stack == null) {
                 if (Build.VERSION.SDK_INT >= 9) {
                     stack = new HurlStack();
                 } else {
                     // Prior to Gingerbread, HttpUrlConnection was unreliable.
                     // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                     stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
                 }
             }
    
             Network network = new BasicNetwork(stack);
    
             RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
             queue.start();
    
             return queue;
         }
    
         /**
          * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
          *
          * @param context A {@link Context} to use for creating the cache dir.
          * @return A started {@link RequestQueue} instance.
          */
         public static RequestQueue newRequestQueue(Context context) {
             return newRequestQueue(context, null);
         }

    通常使用的是第二个接口。也就是仅仅有一个參数的newRequestQueue(Context context),使stack默觉得null。能够看到我们得到的RequestQueue是通过RequestQueue申请。然后又调用了其start方法,最后返回给我们的。接下来看一下RequestQueue的构造方法:

         /**
          * Creates the worker pool. Processing will not begin until {@link #start()} is called.
          *
          * @param cache A Cache to use for persisting responses to disk
          * @param network A Network interface for performing HTTP requests
          * @param threadPoolSize Number of network dispatcher threads to create
          * @param delivery A ResponseDelivery interface for posting responses and errors
          */
         public RequestQueue(Cache cache, Network network, int threadPoolSize,
                 ResponseDelivery delivery) {
             mCache = cache;
             mNetwork = network;
             mDispatchers = new NetworkDispatcher[threadPoolSize];
             mDelivery = delivery;
         }
    
         /**
          * Creates the worker pool. Processing will not begin until {@link #start()} is called.
          *
          * @param cache A Cache to use for persisting responses to disk
          * @param network A Network interface for performing HTTP requests
          * @param threadPoolSize Number of network dispatcher threads to create
          */
         public RequestQueue(Cache cache, Network network, int threadPoolSize) {
             this(cache, network, threadPoolSize,
                     new ExecutorDelivery(new Handler(Looper.getMainLooper())));
         }
    
         /**
          * Creates the worker pool. Processing will not begin until {@link #start()} is called.
          *
          * @param cache A Cache to use for persisting responses to disk
          * @param network A Network interface for performing HTTP requests
          */
         public RequestQueue(Cache cache, Network network) {
             this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
         }
    RequestQueue有三种构造方法,通过newRequestQueue(Context context)调用的是最后一种。创建了一个工作池,默认承载网络线程数量为4个。

    而后两种构造方法都会调用到第一个,进行了一些局部变量的赋值。并没有什么须要多说的,接下来看start()方法:

         public void start() {
             stop();  // Make sure any currently running dispatchers are stopped.
             // Create the cache dispatcher and start it.
             mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
             mCacheDispatcher.start();
    
             // Create network dispatchers (and corresponding threads) up to the pool size.
             for (int i = 0; i < mDispatchers.length; i++) {
                 NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                         mCache, mDelivery);
                 mDispatchers[i] = networkDispatcher;
                 networkDispatcher.start();
             }
         }

    首先进行了stop操作,将所有的运行者所有退出,从而确保当前没有不论什么正在工作的运行者。然后基本的工作就是开启一个CacheDispatcher和符合线程池数量的NetworkDispatcher。首先分析CacheDispatcher。


    CacheDispatcher缓存操作


    CacheDispatcher为缓存队列处理器,创建伊始就被责令開始工作start(),由于CacheDispatcher继承于Thread类,所以须要看一下它所复写的run方法:

         @Override
         public void run() {
             if (DEBUG) VolleyLog.v("start new dispatcher");
             Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
    
             // Make a blocking call to initialize the cache.
             mCache.initialize(); //初始化一个缓存
    
             while (true) {
                 try {
                     // Get a request from the cache triage queue, blocking until
                     // at least one is available.
                     final Request<?> request = mCacheQueue.take(); //在缓存序列中获取请求,堵塞操作
                     request.addMarker("cache-queue-take");
    
                     // If the request has been canceled, don't bother dispatching it.
                     if (request.isCanceled()) { //若该请求已经被取消了。则直接跳过
                         request.finish("cache-discard-canceled");
                         continue;
                     }
    
                     // Attempt to retrieve this item from cache.
                     Cache.Entry entry = mCache.get(request.getCacheKey()); //尝试在缓存中查找是否有缓存数据
                     if (entry == null) {
                         request.addMarker("cache-miss"); //若没有则缓存丢失,证明这个请求并没有获得实施过,扔进网络请求队列中
                         // Cache miss; send off to the network dispatcher.
                         mNetworkQueue.put(request);
                         continue;
                     }
    
                     // If it is completely expired, just send it to the network.
                     if (entry.isExpired()) { //若请求已经过期,那么就要去获取最新的消息,所以依旧丢进网络请求队列中
                         request.addMarker("cache-hit-expired");
                         request.setCacheEntry(entry);
                         mNetworkQueue.put(request);
                         continue;
                     }
    
                     // We have a cache hit; parse its data for delivery back to the request.
                     request.addMarker("cache-hit");
                     Response<?

    > response = request.parseNetworkResponse( new NetworkResponse(entry.data, entry.responseHeaders)); //请求有缓存数据且没有过期。那么能够进行解析,交给请求的parseNetworkReponse方法进行解析,这种方法我们能够在自己定义个Request中进行复写自己定义 request.addMarker("cache-hit-parsed"); if (!entry.refreshNeeded()) { //假设请求有效且并不须要刷新,则丢进Delivery中处理。终于会触发如StringRequest这种请求子类的onResponse或onErrorResponse // Completely unexpired cache hit. Just deliver the response. mDelivery.postResponse(request, response); } else { //请求有效,可是须要进行刷新。那么须要丢进网络请求队列中 // Soft-expired cache hit. We can deliver the cached response, // but we need to also send the request to the network for // refreshing. request.addMarker("cache-hit-refresh-needed"); request.setCacheEntry(entry); // Mark the response as intermediate. response.intermediate = true; // Post the intermediate response back to the user and have // the delivery then forward the request along to the network. mDelivery.postResponse(request, response, new Runnable() { @Override public void run() { try { mNetworkQueue.put(request); } catch (InterruptedException e) { // Not much we can do about this. } } }); } } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } } }

    CacheDispatcher做了非常多事情。之后再来慢慢的消化他们。如今先看一下我们的请求通过add之后到了哪里去。查看RequestQueue.java的add方法:

         /**
          * Adds a Request to the dispatch queue.
          * @param request The request to service
          * @return The passed-in request
          */
         public <T> Request<T> add(Request<T> request) {
             // Tag the request as belonging to this queue and add it to the set of current requests.
             request.setRequestQueue(this);
             synchronized (mCurrentRequests) {
                 mCurrentRequests.add(request); //增加到当前的队列中,是一个HashSet
             }
    
             // Process requests in the order they are added.
             request.setSequence(getSequenceNumber());
             request.addMarker("add-to-queue");
    
             // If the request is uncacheable, skip the cache queue and go straight to the network.若这个请求不须要被缓存,须要直接做网络请求,那么就直接加到网络请求队列中
             if (!request.shouldCache()) {
                 mNetworkQueue.add(request);
                 return request;
             }
    
             // Insert request into stage if there's already a request with the same cache key in flight.
             synchronized (mWaitingRequests) {
                 String cacheKey = request.getCacheKey(); // Volley中使用请求的URL作为存储的key
                 if (mWaitingRequests.containsKey(cacheKey)) { //若等待的请求中有与所请求的URL同样的请求,则须要做层级处理
                     // There is already a request in flight. Queue up.
                     Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
                     if (stagedRequests == null) {
                         stagedRequests = new LinkedList<Request<?

    >>(); } stagedRequests.add(request); mWaitingRequests.put(cacheKey, stagedRequests); //若与已有的请求URL同样,则创建一个层级列表保存他们,然后再放入等待请求列表中 if (VolleyLog.DEBUG) { VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey); } } else { // Insert 'null' queue for this cacheKey, indicating there is now a request in // flight. mWaitingRequests.put(cacheKey, null); //若是一个全新的请求。则直接放入等待队列中,注意数据为null。仅仅有多个url产生层级关系了才有数据 mCacheQueue.add(request); //放入缓存队列中。缓存队列会对请求做处理 } return request; } }


    这里的mCacheQueue就是放入CacheDispatcher的那个堵塞队列,所以在add中加入到mCacheQueue后。由于CacheDispatcher已经执行起来了,所以CacheDispatcher会对刚刚加入的网络请求做处理。分析到这里。能够进行一下阶段性的梳理:

    1. 我们的请求在增加到RequestQueue后,首先会增加到事实上体类的mCurrentRequests列表中做本地管理

    2. 假设之前已经存在了和本次请求相同URL的请求,那么会将层级关系保存在mWaitingRequests中,若没有则层级关系为null,相同也会保存在mWaitingRequests中

    3. 对于没有层级关系(新的URL)的网络请求会直接放入mCacheQueue中让CacheDispatcher对其进行处理

    分析到这里发现对于同一个URL的请求处理比較特殊。当第一次做某个网络请求A时候。A会直接放入缓存队列中由CacheDispatcher进行处理。下一次进行同一个URL的请求B时,若此时A还存在于mWaitingRequests队列中则B的请求被雪藏,不放入mCacheQueue缓存队列进行处理,仅仅是等待。那么等待到什么时候呢?不难猜想到是须要等待A的请求完成后才干够进行B的请求。

    归结究竟就是须要知道mWaitingRequest是怎样运作的?什么时候存储在当中的层级结构才会被拿出来进行请求。临时记下这个问题,如今回头再去继续分析CacheDispatcher。CacheDispatcher对请求的处理能够归结为下面几种情况:


    1. 对于取消的请求。直接表示为完毕并跳过;

    2. 对于尚未有应答数据的、数据过期、有明显标示须要刷新的请求直接丢入mNetworkQueue,mNetworkQueue同mCacheQueue一样,是一个堵塞队列;

    3. 对于有应答数据且数据尚未过期的请求会出发Request的parseNetworkResponse方法进行数据解析,这种方法能够通过继承Request类进行复写(定制)。

    4. 对于有效应答(不管是否须要更新)都会用mDelivery进行应答,须要刷新的请求则会再次放入到mNetworkQueue中去。

    对于(1)暂不做分析。后边会遇到。下边分析一下mNetworkQueue的运作原理,mNetworkQueue是在CacheDispatcher构造时传入的參数,通过RequestQueue的start()方法不难分析出相相应的处理器为NetworkDispatcher。


    NetworkDispatcher网络处理

    在RequestQueue的start()方法中。NetworkDispatcher存在多个,其数量等于RequestQueue构造时候传入的网络处理线程数量相等。默觉得4个。

        public void start() {
            stop();  // Make sure any currently running dispatchers are stopped.
            // Create the cache dispatcher and start it.
            mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
            mCacheDispatcher.start();
    
            // Create network dispatchers (and corresponding threads) up to the pool size.
            for (int i = 0; i < mDispatchers.length; i++) {
                NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                        mCache, mDelivery);
                mDispatchers[i] = networkDispatcher;
                networkDispatcher.start();
            }
        }

    每个dispatcher被创造后都及时进行了start()操作,而NetworkDispatcher也是继承于Thread的类,那么之后须要分析其复写的run方法。在这之前先看一下它的构造方法:

        public NetworkDispatcher(BlockingQueue<Request<?>> queue,
                Network network, Cache cache,
                ResponseDelivery delivery) {
            mQueue = queue;
            mNetwork = network;
            mCache = cache;
            mDelivery = delivery;
        }
    mQueue即为mNetworkQueue,这与CacheDispatcher中使用到的是同一个。而mNetwork默认是BasicNetwork。mCache为缓存,mDelivery为终于的消息配发者。之后会分析到。

    接下来看其复写的run()方法:

        @Override
        public void run() {
            Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); //设置线程可后台执行,不会由于系统休眠而挂起
            Request<?> request;
            while (true) {
                try {
                    // Take a request from the queue.
                    request = mQueue.take(); //mQueue即为mNetworkQueue,从mNetworkQueue中获取请求,也就是说CacheDispatcher丢过来的请求是从这里被NetworkDispatcher获取到的。注意这里获取请求是堵塞的。

    } catch (InterruptedException e) { //退出操作,NetworkDispatcher被设置成退出时候发出中断请求 // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } try { request.addMarker("network-queue-take"); // If the request was cancelled already, do not perform the // network request. if (request.isCanceled()) { //若请求已经被取消,则标记为完毕(被取消),然后继续下一个请求 request.finish("network-discard-cancelled"); continue; } addTrafficStatsTag(request); // Perform the network request. NetworkResponse networkResponse = mNetwork.performRequest(request); //使用BasicNetwork处理请求 request.addMarker("network-http-complete"); // If the server returned 304 AND we delivered a response already, // we're done -- don't deliver a second identical response. if (networkResponse.notModified && request.hasHadResponseDelivered()) { request.finish("not-modified"); continue; } // Parse the response here on the worker thread. Response<?> response = request.parseNetworkResponse(networkResponse); //处理网络请求应答数据 request.addMarker("network-parse-complete"); // Write to cache if applicable. // TODO: Only update cache metadata instead of entire record for 304s. if (request.shouldCache() && response.cacheEntry != null) { mCache.put(request.getCacheKey(), response.cacheEntry); request.addMarker("network-cache-written"); } // Post the response back. request.markDelivered(); //标记请求为已应答并做消息分发处理 mDelivery.postResponse(request, response); } catch (VolleyError volleyError) { parseAndDeliverNetworkError(request, volleyError); //若产生Volley错误则会触发Request的parseNetworkError方法以及mDelivery的postError方法 } catch (Exception e) { VolleyLog.e(e, "Unhandled exception %s", e.toString()); mDelivery.postError(request, new VolleyError(e)); //对于未知错误,仅仅会触发mDelivery的postError方法。

    } } }

    mNetwork.performRequest是真正的网络请求实施的地方,这里对BasicNetwork不做分析。网络请求的回应是NetworkResponse类型,看一下这个类型是怎么样的:

    /**
      * Data and headers returned from {@link Network#performRequest(Request)}.
      */
     public class NetworkResponse {
         /**
          * Creates a new network response.
          * @param statusCode the HTTP status code
          * @param data Response body
          * @param headers Headers returned with this response, or null for none
          * @param notModified True if the server returned a 304 and the data was already in cache
          */
         public NetworkResponse(int statusCode, byte[] data, Map<String, String> headers,
                 boolean notModified) {
             this.statusCode = statusCode;
             this.data = data;
             this.headers = headers;
             this.notModified = notModified;
         }
    
         public NetworkResponse(byte[] data) {
             this(HttpStatus.SC_OK, data, Collections.<String, String>emptyMap(), false);
         }
    
         public NetworkResponse(byte[] data, Map<String, String> headers) {
             this(HttpStatus.SC_OK, data, headers, false);
         }
    
         /** The HTTP status code. */
         public final int statusCode;
    
         /** Raw data from this response. */
         public final byte[] data;
    
         /** Response headers. */
         public final Map<String, String> headers;
    
         /** True if the server returned a 304 (Not Modified). */
         public final boolean notModified;
     }
    NetworkResponse保存了请求的回应数据,包含数据本身和头,还有状态码以及其它相关信息。依据请求类型的不同,对回应数据的处理方式也各有不同。比如回应是String和Json的差别。所以自然而然的网络请求类型须要对它获得的回应数据自行处理,也就触发了Request子类的parseNetworkResponse方法。下边以StringRequest为例进行分析:

         @Override
         protected Response<String> parseNetworkResponse(NetworkResponse response) {
             String parsed;
             try {
                 parsed = new String(response.data, HttpHeaderParser.parseCharset(response.headers));
             } catch (UnsupportedEncodingException e) {
                 parsed = new String(response.data);
             }
             return Response.success(parsed, HttpHeaderParser.parseCacheHeaders(response));
         }
    StringRequest中对于回应首先尝试解析数据和辨别头数据编码类型,若失败则仅仅解析数据部分。

    终于都是触发Request的success方法,參数中还使用Volley自带的HttpHeaderParser对头信息进行了解析。须要看一下Response的success方法到底做了什么,鉴于Response类总共没有多少代码。就所有拿出来做分析了:

     public class Response<T> {
    
         /** 处理解析过的回应信息的回调接口 */
         public interface Listener<T> {
             /** 当接收到回应后 */
             public void onResponse(T response);
         }
    
         /** 处理错误回应的回调接口 */
         public interface ErrorListener {
             /**
              * 发生错误时的回调接口
              */
             public void onErrorResponse(VolleyError error);
         }
    
         /** 返回一个包括已解析结果的成功回应 */
         public static <T> Response<T> success(T result, Cache.Entry cacheEntry) {
             return new Response<T>(result, cacheEntry);
         }
    
         /**
          * 返回错误回应,包括错误码以及可能的其它消息
          */
         public static <T> Response<T> error(VolleyError error) {
             return new Response<T>(error);
         }
    
         /** 解析过的响应信息,错误时为null */
         public final T result;
    
         /** 响应的缓存数据。错误时为null */
         public final Cache.Entry cacheEntry;
    
         /** 具体的错误信息 */
         public final VolleyError error;
    
         /** 此回应软件希望得到第二次回应则为true,即须要刷新 */
         public boolean intermediate = false;
    
         /**
          * 返回true代表回应成功。没有错误。有错误则为false
          */
         public boolean isSuccess() {
             return error == null;
         }
    
    
         private Response(T result, Cache.Entry cacheEntry) {
             this.result = result;
             this.cacheEntry = cacheEntry;
             this.error = null;
         }
    
         private Response(VolleyError error) {
             this.result = null;
             this.cacheEntry = null;
             this.error = error;
         }
     }
    这就是网络响应的类,非常easy。成功或错误都会直接进行标记,通过isSuccess接口提供外部查询。

    假设响应成功,则消息保存在result中。解析头信息得到的缓存数据保存在cacheEntry中。

    Request作为基类,Volley自带的又代表性的其扩展类又StringRequest和JsonObjectRequest,假设开发人员有比較大的自己定义需求就须要继承Request复写内部一些重要的方法。

    同一时候mDelivery出场的机会这么多。为什么他总出如今处理请求的地方呢?下边就对它和Request一起进行分析。当中Request依旧以StringRequest为例。

    ExecutorDelivery消息分发者与Request请求

    mDelivery类型为ResponseDelivery,实为接口类型:

    public interface ResponseDelivery {
        /**
         * Parses a response from the network or cache and delivers it.
         */
        public void postResponse(Request<?> request, Response<?> response);
    
        /**
         * Parses a response from the network or cache and delivers it. The provided
         * Runnable will be executed after delivery.
         */
        public void postResponse(Request<?> request, Response<?

    > response, Runnable runnable); /** * Posts an error for the given request. */ public void postError(Request<?

    > request, VolleyError error); }

    三个接口当中两个是回应网络应答的,最后一个回应网络错误。追溯RequestQueue构造的时候,默认的分发者为ExecutorDelivery:

         public RequestQueue(Cache cache, Network network, int threadPoolSize) {
             this(cache, network, threadPoolSize,
                     new ExecutorDelivery(new Handler(Looper.getMainLooper())));
         }

    可见。消息分发者工作在主线程上。常见的分发者所做的工作有:

         @Override
         public void postResponse(Request<?> request, Response<?> response) { //发出响应
             postResponse(request, response, null);
         }
    
         @Override
         public void postResponse(Request<?> request, Response<?> response, Runnable runnable) { //发出响应
             request.markDelivered();
             request.addMarker("post-response");
             mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
         }
    
         @Override
         public void postError(Request<?> request, VolleyError error) { //发出错误响应
             request.addMarker("post-error");
             Response<?

    > response = Response.error(error); mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null)); }

    这里发现一个问题,事实上在NetworkDispatcher中的request.markDelivered()是多余的,在postResponse中已经运行了。不管是正常的响应还是错误都会运行ResponseDeliveryRunnable:

    private class ResponseDeliveryRunnable implements Runnable {
             private final Request mRequest;
             private final Response mResponse;
             private final Runnable mRunnable;
    
             public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
                 mRequest = request;
                 mResponse = response;
                 mRunnable = runnable; //若指定了runnable。如上面分析的在网络请求有效可是须要更新的时候会指定一个runnable的
             }
    
             @SuppressWarnings("unchecked")
             @Override
             public void run() {
                 // If this request has canceled, finish it and don't deliver.
                 if (mRequest.isCanceled()) { //若请求被取消。结束并做标记
                     mRequest.finish("canceled-at-delivery");
                     return;
                 }
    
                 // Deliver a normal response or error, depending.
                 if (mResponse.isSuccess()) { //若请求成功则处理回应
                     mRequest.deliverResponse(mResponse.result);
                 } else {  //若不成功则处理错误
                     mRequest.deliverError(mResponse.error);
                 }
    
                 // If this is an intermediate response, add a marker, otherwise we're done
                 // and the request can be finished.
                 if (mResponse.intermediate) {
                     mRequest.addMarker("intermediate-response");
                 } else {
                     mRequest.finish("done");
                 }
    
                 // If we have been provided a post-delivery runnable, run it.
                 if (mRunnable != null) { //假设指定了额外的runnable这里还会对它进行运行
                     mRunnable.run();
                 }
            }
         }

    Delivery作为网络回应的分发、处理者,对回应数据进行了最后一层的把关。而当Delivery查询回应是否成功时,由于Request已经对回应信息做过处理(检查其成功还是错误),所以能够查询到正确的状态。

    若查询到回应成功则会触发Request的deliverResponse方法(以StringRequest为例):

         @Override
         protected void deliverResponse(String response) {
             mListener.onResponse(response);
         }
    事实上就是触发了用户自己定义的网络响应监听器,mListener在StringRequest的构造中进行赋值:

         public StringRequest(int method, String url, Listener<String> listener,
                 ErrorListener errorListener) {
             super(method, url, errorListener);
             mListener = listener;
         }
    
         public StringRequest(String url, Listener<String> listener, ErrorListener errorListener) {
             this(Method.GET, url, listener, errorListener);
         }
    当查询到网络回应数据不成功时候将触发Request的deliverError方法,这种方法StringRequest并没有复写,所以追溯到其父类Request中:

         public void deliverError(VolleyError error) {
             if (mErrorListener != null) {
                 mErrorListener.onErrorResponse(error);
             }
         }
    这里mErrorListener也是用户在使用Volley时候自定的错误监听器。在StringRequest中并没有处理,是通过super运行Request的构造方法进行赋值的:

         public Request(int method, String url, Response.ErrorListener listener) {
             mMethod = method;
             mUrl = url;
             mErrorListener = listener;
             setRetryPolicy(new DefaultRetryPolicy());
    
             mDefaultTrafficStatsTag = findDefaultTrafficStatsTag(url);
         }
    当这个请求已经完整的确定完毕后,Delivery会通知Request进行结束操作——finish:

         void finish(final String tag) {
             if (mRequestQueue != null) { //若请求队列有效,则在请求队列中标记当前请求为结束
                 mRequestQueue.finish(this);
             }  //之后都是日志相关。不做分析
             if (MarkerLog.ENABLED) {
                 final long threadId = Thread.currentThread().getId();
                 if (Looper.myLooper() != Looper.getMainLooper()) {
                     // If we finish marking off of the main thread, we need to
                     // actually do it on the main thread to ensure correct ordering.
                     Handler mainThread = new Handler(Looper.getMainLooper());
                     mainThread.post(new Runnable() {
                         @Override
                         public void run() {
                             mEventLog.add(tag, threadId);
                             mEventLog.finish(this.toString());
                         }
                     });
                     return;
                 }
    
                 mEventLog.add(tag, threadId);
                 mEventLog.finish(this.toString());
             } else {
                 long requestTime = SystemClock.elapsedRealtime() - mRequestBirthTime;
                 if (requestTime >= SLOW_REQUEST_THRESHOLD_MS) {
                     VolleyLog.d("%d ms: %s", requestTime, this.toString());
                 }
             }
         }

    mRequestQueue为RequestQueue类型,在开篇中就分析了RequestQueue。相关的另一个问题当时没有进行挖掘,即mWaitingQueue中保留的同样URL的多个请求层级何时才可以被触发。下边分析mRequestQueue的finish方法就能解开这个疑问了:

         void finish(Request<?

    > request) { // Remove from the set of requests currently being processed. synchronized (mCurrentRequests) { mCurrentRequests.remove(request); //当请求已完毕。会从mCurrentRequests队列中被移除掉 } if (request.shouldCache()) { //默认是true的。除非你调用Request的setShouldCache方法主动设定 synchronized (mWaitingRequests) { String cacheKey = request.getCacheKey(); //获取cacheKey,前边说过就是URL Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey); //移除列表中的这个请求,同一时候取出其可能存在的层级关系 if (waitingRequests != null) { if (VolleyLog.DEBUG) { VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.", waitingRequests.size(), cacheKey); } // Process all queued up requests. They won't be considered as in flight, but // that's not a problem as the cache has been primed by 'request'. mCacheQueue.addAll(waitingRequests); //若真的有层级关系。那么将其它的请求所有增加到mCacheQueue中交由CacheDispatcher处理 } } } }

    好了,终于待定的问题也攻克了,这就是一个Request网络请求在Volley中的来龙去脉。


    总结


    1. 当一个RequestQueue被成功申请后会开启一个CacheDispatcher(缓存调度器)和4个(默认)NetworkDispatcher(网络请求调度器)。

    2. CacheDispatcher缓存调度器最为第一层缓冲。開始工作后堵塞的从缓存序列mCacheQueue中取得请求:

      a. 对于已经取消了的请求。直接标记为跳过并结束这个请求

      b. 全新或过期的请求。直接丢入mNetworkQueue中交由N个NetworkDispatcher进行处理

      c. 已获得缓存信息(网络应答)却没有过期的请求。交由Request的parseNetworkResponse进行解析,从而确定此应答是否成功。

    然后将请求和应答交由Delivery分发者进行处理,假设须要更新缓存那么该请求还会被放入mNetworkQueue中

    3. 用户将请求Request add到RequestQueue之后:

      a. 对于不须要缓存的请求(须要额外设置,默认是须要缓存)直接丢入mNetworkQueue交由N个NetworkDispatcher处理。

      b. 对于须要缓存的。全新的请求增加到mCacheQueue中给CacheDispatcher处理

      c. 须要缓存,可是缓存列表中已经存在了同样URL的请求,放在mWaitingQueue中做临时雪藏,待之前的请求完成后。再又一次加入到mCacheQueue中;

    4. 网络请求调度器NetworkDispatcher作为网络请求真实发生的地方。对消息交给BasicNetwork进行处理,相同的,请求和结果都交由Delivery分发者进行处理;

    5. Delivery分发者实际上已经是对网络请求处理的最后一层了。在Delivery对请求处理之前,Request已经对网络应答进行过解析,此时应答成功与否已经设定。而后Delivery依据请求所获得的应答情况做不同处理:

      a. 若应答成功,则触发deliverResponse方法,终于会触发开发人员为Request设定的Listener

      b. 若应答失败,则触发deliverError方法,终于会触发开发人员为Request设定的ErrorListener

    处理完后。一个Request的生命周期就结束了。Delivery会调用Request的finish操作,将其从mRequestQueue中移除,与此同一时候,假设等待列表中存在同样URL的请求。则会将剩余的层级请求所有丢入mCacheQueue交由CacheDispatcher进行处理。


    一个Request的生命周期:

    1. 通过add增加mRequestQueue中,等待请求被运行。

    2. 请求运行后,调用自身的parseNetworkResponse对网络应答进行处理,并推断这个应答是否成功;

    3. 若成功,则终于会触发自身被开发人员设定的Listener;若失败。终于会触发自身被开发人员设定的ErrorListener。


    至此Volley中网络请求的来龙去脉分析清楚了。假设我们由于一些原因须要继承Request来自己定义自己的Request,最须要注意的就是parseNetworkResponse方法的复写。此方法对请求之后的命运有决定性的作用。

  • 相关阅读:
    软件工程第六次作业
    软件工程第五次作业
    软件工程第四次作业
    软件工程第三次作业
    软件工程第二次作业
    软件工程第一次作业
    《CLSZS团队》:团队项目选题报告
    计算机软件工程 作业五
    计算机软件工程 作业四
    计算机软件工程 作业三
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/7222937.html
Copyright © 2011-2022 走看看