题目:
The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
代码:
class Solution { public: string getPermutation(int n, int k) { std::stringstream result; // if the digit has been used int flag[10]; for(int i = 1; i<10; ++i) flag[i]=1; // calculate each digit int factorical,quotient,remaind=k-1; for (int i = 1; i<=n; ++i) { factorical = Solution::getFactorical(n-i); quotient = remaind/factorical; int tmp = 0; for(int j=1; j<=9; ++j){ tmp = tmp + flag[j]; if ( tmp==(quotient+1) ){ quotient = j; break; } } result << quotient; flag[quotient] = 0; remaind = remaind%factorical; // update remaind } return result.str(); } static int getFactorical(int n){ int result = 1; for (int i = 1; i <= n; ++i){ result = result * i; } return result; } };
Tips:
1. 主要思路是康托编码,具体什么是康托编码(http://blog.sina.com.cn/s/blog_4bf7b6580100l2zs.html)
2. 把计算阶乘的代码单独列出来
3. 对于c++如何将int转为字符不太懂,因此用了sstream的这个方法,后面遇到其他的方法再改进一下。
======================================================
第二次过这道题,对康托编码的算法有些生疏了,参考了blog才回忆起来。然后扫了一些细节,形成了自己的代码。
class Solution { public: string getPermutation(int n, int k) { vector<char> ret; vector<bool> visit(9,false); k = k-1; for ( int i=n-1; i>=0; --i) { int factor = Solution::factorial(i); int num_less = k / factor; // find num less int j=0; int count = 0; for ( ; j<9; ++j ) { if ( !visit[j] ) { if ( count==num_less ) break; count++; } } visit[j] = true; ret.push_back(j+'1'); k = k % factor; } return string(ret.begin(),ret.end()); } static int factorial(int n) { if ( n==0 || n==1 ) return 1; int ret = 1; for ( int i = 1; i<=n; ++i) ret = ret * i; return ret; } };