主要原理:
- 和Siamese Neural Networks一样,将分类问题转换成两个输入的相似性问题。
- 和Siamese Neural Networks不同的是:
- Relation Network中branch的输出和relation classifier的输入是feature map
- 而Siamese中branch的输出和classifier的输入是feature vector
其中:
g-表示关系深度网络
C-表示concatenate
f-表示特征提取网络(branch)
xi,xj- 一个表示有标签样本,另一个表示待分类样本
训练中每个episode/mini-batch包含样本数量=N*C
其中:
C = 类型数量
N = sample images + query images
论文中区分了sample images和query images,我认为没有必要,训练时无差别对待它们,能获得更多的样本组合。
结构示意图如下,其中sample的feature是K个样本feature的均值。