zoukankan      html  css  js  c++  java
  • hihoCoder #1196 高斯消元·二

    题意:如上图的一块板子,其中部分格子已经亮起,每当按下一个格子,其上下左右及自己共5个格子的亮暗状态会改变(亮变暗,暗变亮)。给定一块板子的初始状态,问要使得每个格子都亮起来,需要按多少次,以及按哪些格子?

    思路:

      (1)对于任意一个格子,如果这个格子改变了偶数次状态,则等价于没有发生改变。我们可以将1看作格子亮着,0看作格子暗着,每改变1次就加1,最后格子的状态等于其总数值 MOD 2。则其运算结果刚好满足异或运算,即每改变一次等于状态值 xor 1。

      (2)对于一个格子x和它周围的4个格子来说,若格子x被按下偶数次,它自身和周围4个格子的状态也等于没有发生改变。所以我们可以知道:任意一个格子至多被按下一次

      (3)假设有数组x[1..30],分别表示这30个格子是否按下1次,若按下则x[i]=1,否则x[i]=0。则对于1个格子,他最后的状态为:

          当前状态 = 初始状态 xor (a[1] * x[1]) xor (a[2] * x[2]) xor ... xor (a[30] * x[30]);

        a[i]表示第i个格子是否受这个格子的影响,按一次最多只能影响5个,若在边界上可能还更少。

        因为我们的目标是要让所有等格子都为亮的状态,故我们需要让 当前状态 = 1,再将式子变换一下:

          (a[1] * x[1]) xor (a[2] * x[2]) xor ... xor (a[30] * x[30]) = 1 xor 初始状态;

        那么右边的就完全知道了,而左边只是知道a数组,要求的就是x数组了。上面仅仅是由一个格子所列出的式子,所以一共得列出30条式子才行,再进行高斯消元。大概是如下的:

          (a[ 1][1] * x[1]) xor (a[ 1][2] * x[2]) xor ... xor (a[ 1][30] * x[30])   = y[1];

          (a[ 2][1] * x[1]) xor (a[ 2][2] * x[2]) xor ... xor (a[ 2][30] * x[30])   = y[2];

          .......此处省略27条式子.....................

          (a[30][1] * x[1]) xor (a[30][2] * x[2]) xor ... xor (a[30][30] * x[30]) = y[30];

      (4)消元方法:方法和普通消元方法差不多,唯一变的是,若要消去a[j][i],不再用加减法,而是用xor。将第i行与第j行分别左边与左边,右边与右边相异或,作为第j行的结果。

        (a[j][1] * x[1]) xor (a[j][2] * x[2]) xor ... xor (a[j][30] * x[30]) xor (a[i][1] * x[1]) xor (a[i][2] * x[2]) xor ... xor (a[ i][30] * x[30]) = y[j] xor y[i]

        => ((a[j][1] * x[1]) xor (a[i][1] * x[1])) xor (((a[j][2] * x[2]) xor (a[i][2] * x[2]))) xor ... xor ((a[j][30] * x[30]) xor (a[i][30] * x[30])) = y[j] xor y[i]

          => ((a[j][1] xor a[i][1]) * x[1]) xor ((a[j][2] xor a[i][2]) * x[2]) xor ... ((a[j][30] xor a[i][30]) * x[30]) = y[j] xor y[i]

      

        总的来说,就是((a[j][1] * x[1]) xor (a[i][1] * x[1]))可以变成 ((a[j][1] xor a[i][1]) * x[1]) 。注意,如果a[j][i]本来就为0,这一步完全可省。消完之后从后面开始逐步进行代入就可以求出所有的x[i]了。

      

     1 #include <bits/stdc++.h>
     2 #define max(X,Y) ((X) > (Y) ? (X) : (Y))
     3 #define min(X,Y) ((X) < (Y) ? (X) : (Y))
     4 #define pii pair<int,int>
     5 #define INF 0x7f7f7f7f
     6 #define LL long long
     7 using namespace std;
     8 const int N=30;
     9 const int M=50;
    10 int x[M];
    11 int r[M];
    12 int y[M];
    13 int a[M][M];
    14 
    15 
    16 void GE()
    17 {
    18     memset(a, 0, sizeof(a));
    19     memset(y, 0, sizeof(y));
    20     memset(x, 0, sizeof(x));
    21 
    22     for(int i=1; i<=N; i++) //初始化
    23         y[i]=1^r[i];        //等式右边
    24 
    25     for(int i=1; i<=N; i++) //第i个格子的四周4个
    26     {
    27         a[i][i]=a[i][i+6]=1;
    28         if(i-6>0)   a[i][i-6]=1;
    29         if(i%6!=0)  a[i][i+1]=1;
    30         if(i%6!=1)  a[i][i-1]=1;
    31     }
    32 
    33     for(int i=1; i<=N; i++)
    34     {
    35         for(int j=N; j>=i; j--)   //找到某行第i列非0的,换到第i行。
    36         {
    37             if(a[j][i])
    38             {
    39                 swap(a[i], a[j]);
    40                 swap(y[i], y[j]);
    41                 break;
    42             }
    43         }
    44 
    45         //消去其他行的第i列
    46         for(int j=i+1; j<=N; j++)
    47         {
    48             if(a[j][i]) //为1的才要消
    49             {
    50                 a[j][i]=0;
    51                 for(int k=i+1; k<=N; k++)    a[j][k]^=a[i][k];
    52                 y[j]^=y[i];
    53             }
    54         }
    55     }
    56 
    57     //回代
    58     for(int i=N; i>=1; i--) //对于第i行,只需要算出第i列的x。
    59     {
    60         for(int j=N; j>i; j--)    y[i]^=x[j]*a[i][j];   //反向回代
    61         x[i]=y[i];  //a[i][i]已经保证为1了。
    62     }
    63 
    64 }
    65 
    66 int main()
    67 {
    68     freopen("input.txt", "r", stdin);
    69     char c;
    70     for(int i=1; i<=N; i++)
    71     {
    72         c=getchar();
    73         if(c=='0' || c=='1')  r[i]=c-'0';
    74         else  i--;
    75     }
    76 
    77     GE();
    78 
    79     int cnt=0;
    80     for(int i=1; i<=N; i++) if(x[i])    cnt++;
    81     printf("%d
    ", cnt);
    82     for(int i=1; i<=N; i++) if(x[i])    printf("%d %d
    ", (i-1)/6+1, (i-1)%6+1);
    83 
    84     return 0;
    85 }
    AC代码
  • 相关阅读:
    Maven报错找不到jre
    SpringBoot学习记(一)第一个SpringBoot Web服务
    (转!)大话websocket
    (转!)Netdata---Linux系统性能实时监控平台部署
    Jmeter(四十三)WebSocket Sampler 和 Ajax Request
    Jmeter(四十二)Jmeter工作原理
    Centos7安装docker(转!)
    es6 数组去重
    数组对象根据某个值相同合并分组
    await在forEach不起作用解决【await is a reserved word】
  • 原文地址:https://www.cnblogs.com/xcw0754/p/4733761.html
Copyright © 2011-2022 走看看