好像是 01 分数规划 板子
列出式子 (F - ∑Ci) / (∑Ti)
设当前二分的答案为 ans
若 ans ≤ (F - ∑Ci) / (∑Ti)
则说明 ans 可以再增大
那我们二分边界调整的条件就有了
就是当 F - (∑ans*Ti + ∑Ci) ≥ 0 时
就扩大二分上界
代码:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <cstdio>
using namespace std;
const int MAXN = 405, MAXM = 10005;
struct EDGE {
int x, y, c, t;
double hf;
bool operator < (const EDGE& b) const {
return hf < b.hf;
}
}edge[MAXM];
int n, m, f;
int fa[MAXN];
inline void clearfa() {
for (int i = 1; i <= n; ++i) fa[i] = i;
}
int findfa(int x) {
return ((fa[x] == x) ? (x) : (fa[x] = findfa(fa[x])));
}
inline bool link(int x, int y) {
register int fx = findfa(x), fy = findfa(y);
if (fx == fy) return false;
fa[fx] = fy;
return true;
}
inline bool chk(double mid) {
register double ans = 0.0;
clearfa();
for (int i = 1; i <= m; ++i) edge[i].hf = edge[i].t * mid + edge[i].c;
sort(edge + 1, edge + m + 1);
for (int i = 1; i <= m; ++i) {
if (link(edge[i].x, edge[i].y)) {
ans += edge[i].hf;
}
}
return ((ans - (double)f) <= 0.0);
}
inline void hfs(double l, double r) {
register double mid = 0.0;
while ((r - l) > 1e-7) {
mid = ((l + r) / 2.0);
if (chk(mid)) l = mid;
else r = mid;
}
printf("%.4lf
", l);
}
int main() {
scanf("%d%d%d", &n, &m, &f);
for (int i = 1; i <= m; ++i) {
scanf("%d%d%d%d", &edge[i].x, &edge[i].y, &edge[i].c, &edge[i].t);
}
hfs(0, 2000000000.0);
return 0;
}