zoukankan      html  css  js  c++  java
  • 【anaconda软件】Anaconda使用教程全攻略---Anaconda的介绍(一)

    一、序言

    Python是一种面向对象的解释型计算机程序设计语言,其使用,具有跨平台的特点,可以在Linux、macOS以及Windows系统中搭建环境并使用,其编写的代码在不同平台上运行时,几乎不需要做较大的改动,使用者无不受益于它的便捷性。

    此外,Python的强大之处在于它的应用领域范围之广,遍及人工智能、科学计算、Web开发、系统运维、大数据及云计算、金融、游戏开发等。实现其强大功能的前提,就是Python具有数量庞大且功能相对完善的标准库和第三方库。通过对库的引用,能够实现对不同领域业务的开发。然而,正是由于库的数量庞大,对于管理这些库以及对库作及时的维护成为既重要但复杂度又高的事情。

    二、什么是anaconda

    1. 简介

    Anaconda(官方网站)就是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。【软件下载链接】

    2. 特点

    Anaconda具有如下特点:

    • ▪ 开源
    • ▪ 安装过程简单
    • ▪ 高性能使用Python和R语言
    • ▪ 免费的社区支持

    其特点的实现主要基于Anaconda拥有的:

    • ▪ conda包
    • ▪ 环境管理器
    • ▪ 1,000+开源库

    如果日常工作或学习并不必要使用1,000多个库,那么可以考虑安装Miniconda(下载界面请戳),这里不过多介绍Miniconda的安装及使用。

     

    3. Anaconda、conda、pip、virtualenv的区别

    ① Anaconda

    Anaconda是一个包含180+的科学包及其依赖项的发行版本。其包含的科学包包括:conda, numpy, scipy, ipython notebook等。

     

    ② conda

    conda是包及其依赖项和环境的管理工具。

    • 适用语言:Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN。
    • 适用平台:Windows, macOS, Linux
    • conda用途:
      1. 快速安装、运行和升级包及其依赖项。
      2. 在计算机中便捷地创建、保存、加载和切换环境。
      3. 如果你需要的包要求不同版本的Python,你无需切换到不同的环境,因为conda同样是一个环境管理器。仅需要几条命令,你可以创建一个完全独立的环境来运行不同的Python版本,同时继续在你常规的环境中使用你常用的Python版本。——Conda官方网站
    • conda为Python项目而创造,但可适用于上述的多种语言。
    • conda包和环境管理器包含于Anaconda的所有版本当中。

     

    ③ pip

    pip是用于安装和管理软件包的包管理器。

    •  pip编写语言:Python。
    • Python中默认安装的版本:
      1. Python 2.7.9及后续版本:默认安装,命令为 pip
      2.  Python 3.4及后续版本:默认安装,命令为 pip3
    • pip名称的由来:pip采用的是递归缩写进行命名的。其名字被普遍认为来源于2处:
      1. “Pip installs Packages”(“pip安装包”)
      2. “Pip installs Python”(“pip安装Python”)

     

    ④ virtualenv

    virtualenv是用于创建一个独立的Python环境的工具。【基于本机的python的环境】

    •  解决问题:
      1. 当一个程序需要使用Python 2.7版本,而另一个程序需要使用Python 3.6版本,如何同时使用这两个程序?如果将所有程序都安装在系统下的默认路径,如:/usr/lib/python2.7/site-packages,当不小心升级了本不该升级的程序时,将会对其他的程序造成影响。
      2. 如果想要安装程序并在程序运行时对其库或库的版本进行修改,都会导致程序的中断。
      3. 在共享主机时,无法在全局 site-packages 目录中安装包。
    • virtualenv将会为它自己的安装目录创建一个环境,这并不与其他virtualenv环境共享库;同时也可以选择性地不连接已安装的全局库。

     

    ⑤ pip 与 conda 比较

    作者:小飞
    备注:本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利。
    备注:部分图片下载来源于网络,如若有侵权,请联系本人予以删除,邮箱:2777418194@qq.com。
    本博客作为本人软件学习记录而用,不提供任何软件的下载链接,敬请谅解
    可关注本人微信公众号【软件开发部门】回复“资源”获取部分免费资源
  • 相关阅读:
    [Jenkins] TestComplete 使用Jenkins进行持续集成测试
    selenium 使用close和quit关闭driver的不同点
    sleep和wait的区别
    Appium-测试失败后获取屏幕截图的方法
    sql优化的几种方式
    【Fine学习笔记】python 文件l操作方法整理
    【Fine学习笔记】Xcode的快捷方式
    【Fine学习笔记】Jmeter笔记
    【Fine原创】常见的HTTP错误码的具体含义整理
    【Fine原创】JMeter分布式测试中踩过的那些坑
  • 原文地址:https://www.cnblogs.com/xf23554/p/13823984.html
Copyright © 2011-2022 走看看