Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 190377 Accepted Submission(s): 44335
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
1.找到maxsum a[i] = max(maxsum a[i-1]+a[i],a[i]) 这个规律。
2.注意在s<0情况下的处理。
3.DP的思路。

1 #include<iostream> 2 #include<cstdio> 3 int max(int x,int y ) 4 { 5 if (x>y) 6 return x; 7 else 8 return y; 9 } 10 int main() 11 { 12 int T,n,a,s,sum,x,y,z; 13 while (~scanf("%d",&T)) 14 { 15 for (int o=1;o<=T;o++) 16 { 17 scanf("%d",&n); 18 z=1;s=0;sum=-1001;x=1,y=1; 19 for (int p=1;p<=n;p++) 20 { 21 scanf("%d",&a); 22 s+=a; 23 if(s>sum) 24 { 25 sum=s; 26 x=z; 27 y=p; 28 } 29 if(s<0) 30 { 31 s=0; 32 z=p+1; 33 } 34 } 35 printf("Case %d: ",o); 36 printf("%d %d %d ",sum,x,y); 37 if(o!=T) 38 puts(""); 39 } 40 } 41 return 0; 42 }