zoukankan      html  css  js  c++  java
  • [JSOI2018][LOJ2549][洛谷P4557]战争(闵可夫斯基和)

    题面

    http://loj.ac/problem/2549

    题解

    前置知识

    设第一个部落的凸包内的点的集合为A,第二个部落的凸包内的点的集合为B。

    那么,平移向量P后,存在冲突即代表着(exist x in A,y in B),且(x=y+p)。因此,由闵可夫斯基和的定义,存在冲突等价于(p{in}A+(-B)),其中(-B)指的是(B)关于原点进行中心对称后的图形。

    判断一个点((dx,dy))是否在一个凸包内部,只需要将这个凸包分为左右两半,找到直线(y=dy)与左右凸包的交点所在的线段,然后判叉积即可。

    代码

    #include<bits/stdc++.h>
    
    using namespace std;
    
    #define N 100000
    #define rg register
    #define In inline
    #define ll long long
    #define eps 1e-8
    
    In ll read(){
    	ll s = 0,ww = 1;
    	char ch = getchar();
    	while(ch < '0' || ch > '9'){if(ch == '-')ww = -1;ch = getchar();}
    	while('0' <= ch && ch <= '9'){s = 10 * s + ch - '0';ch = getchar();}
    	return s * ww;
    }
    
    In ll sgn(double x){
    	if(x < -eps)return -1;
    	return x > eps;
    }
    
    struct vec{
    	ll x,y;
    	vec(){}
    	vec(ll _x,ll _y){x = _x,y = _y;}
    	In friend vec operator + (vec a,vec b){
    		return vec(a.x + b.x,a.y + b.y);
    	}
    	In friend vec operator - (vec a,vec b){
    		return vec(a.x - b.x,a.y - b.y);
    	}
    	In friend ll Dot(vec a,vec b){
    		return a.x * b.x + a.y * b.y;
    	}
    	In friend ll Cross(vec a,vec b){
    		return a.x * b.y - a.y * b.x;
    	}
    	In friend double ang(vec a){
    		return atan2(a.y,a.x);
    	}
    };
    
    In bool samedir(vec a,vec b){return Cross(a,b) == 0 && Dot(a,b) > 0;}
    
    In bool cmp(vec a,vec b){
    	if(a.y == b.y)return a.x < b.x;
    	else return a.y > b.y;
    }
    
    ll n,m,q,mid;
    vec A[N+5],B[N+5],H[2*N+5];
    vector<vec>H1,H2;
    
    In bool check(vec a,vec b,vec c){
    	return Cross(c - b,a - b) > 0;
    }
    
    void calcCH(vec *A,ll n,vector<vec>&H){
    	sort(A + 1,A + n + 1,cmp);
    	for(rg int i = 1;i <= n;i++){
    		while(H.size() > 1 && !check(H[H.size()-2],H[H.size()-1],A[i]))H.pop_back();
    		H.push_back(A[i]);	
    	}
    	int m = H.size();
    	for(rg int i = n;i >= 1;i--){
    		while(H.size() > m && !check(H[H.size()-2],H[H.size()-1],A[i]))H.pop_back();
    		H.push_back(A[i]);
    	}
    	H.pop_back();
    }
    
    vec l1[N+5],l2[N+5];
    vector<vec>l;
    ll Hn;
    
    void mink(){
    	int n = H1.size(),m = H2.size();
    	for(rg int i = 0;i < n - 1;i++)l1[i] = H1[i+1] - H1[i];l1[n-1] = H1[0] - H1[n-1];
    	for(rg int i = 0;i < m - 1;i++)l2[i] = H2[i+1] - H2[i];l2[m-1] = H2[0] - H2[m-1];
    	int j = -1;
    	for(rg int i = 0;i < n;i++){
    		double Ang = ang(l1[i]);
    		while(j < m - 1 && ang(l2[j+1]) < Ang)j++,l.push_back(l2[j]);
    		l.push_back(l1[i]);
    	}
    	while(j < m - 1)j++,l.push_back(l2[j]);
    	ll cur = 0;
    	for(rg int i = 0;i < l.size();i++)
    		if(i && samedir(l[i],l[i-1])){
    			l[cur-1] = l[cur-1] + l[i];
    		}
    		else l[cur++] = l[i];
    	Hn = cur;
    	l.resize(Hn);
    	H[0] = H1[0] + H2[0];
    	for(rg int i = 0;i < Hn - 1;i++)H[i+1] = H[i] + l[i];
    	for(rg int i = 0;i < l.size();i++)if(sgn(ang(l[i])) > 0){
    		mid = i;break;
    	}
    }
    
    In bool cmp2(vec a,vec b){return a.y >= b.y;}
    
    In bool cmp3(vec a,vec b){return a.y <= b.y;}
    
    In bool judge(int i,vec a){
    	return Cross(l[i],a - H[i]) >= 0;
    }
    
    bool solve(vec a){
    	if(a.y > H[0].y || a.y < H[mid].y)return 0;
    	if(a.y == H[0].y){
    		int L = H[0].x,R = H[Hn-1].y == H[0].y ? H[Hn-1].x : L;
    		return L <= a.x && a.x <= R;
    	}
    	if(a.y == H[mid].y){
    		int R = H[mid].x,L = H[mid-1].y == H[mid].y ? H[mid-1].x : R;
    		return L <= a.x && a.x <= R;
    	}
    	int i;
    	i = upper_bound(H,H + mid,a,cmp2) - H - 1;if(!judge(i,a))return 0;
    	i = upper_bound(H + mid,H + Hn,a,cmp3) - H - 1;if(!judge(i,a))return 0;
    	return 1;
    }
    
    int main(){
    	n = read(),m = read(),q = read();
    	for(rg int i = 1;i <= n;i++){
    		int x = read(),y = read();
    		A[i] = vec(x,y);
    	}
    	calcCH(A,n,H1);
    	for(rg int i = 1;i <= m;i++){
    		int x = read(),y = read();
    		B[i] = vec(-x,-y);
    	}
    	calcCH(B,m,H2);
    	mink();
    	while(q--){
    		int x = read(),y = read();
    		puts(solve(vec(x,y)) ? "1" : "0");
    	}
    	return 0;
    }
    
  • 相关阅读:
    python学习笔记(2)
    数据分析工具pandas
    python学习笔记(1)
    python学习笔记(3)
    python学习笔记(2):科学计算及数据可视化入门
    python学习笔记(1):python基础
    js setTimeout 和 setInterval 区别
    C#根据URL生成签名
    jquery.validate.js客户端验证
    redis学习(一)
  • 原文地址:https://www.cnblogs.com/xh092113/p/12326043.html
Copyright © 2011-2022 走看看