zoukankan      html  css  js  c++  java
  • uva 11235

    2007/2008 ACM International Collegiate Programming Contest University of Ulm Local Contest

    Problem F: Frequent values

    You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.

    Input Specification

    The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.

    The last test case is followed by a line containing a single 0.

    Output Specification

    For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.

    Sample Input

    10 3
    -1 -1 1 1 1 1 3 10 10 10
    2 3
    1 10
    5 10
    0
    

    Sample Output

    1
    4
    3
    题目描述:求某段给定区间内出现最多的数出现的次数,这个序列数不下降的
    由于不下降,所有相等的数会聚集在一起,采用游程编码,
    (a,b)表示有b个连续的a.
    由于不改变某个点的值,可以采用RMQ或者线段树进行统计.
    体会到递推最重要的就是递推顺序和初始化。
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #define maxn 100100
    #define LL long long
    using namespace std;
    
    int value[maxn];
    int count_[maxn];
    int num[maxn];
    int Left[maxn];
    int Right[maxn];
    int a[maxn];
    LL MAXN[maxn*4];
    LL d[maxn][30];
    int n,q;
    int ql,qr;
    /*int op,ql,qr,p,v;
    void update(int o,int L,int R)
    {
       int M=L+(R-L)/2;
       if(L==R)
        MAXN[o]=v;
        else
        {
              if(p<=M)
            update(o*2,L,M);
                else
            update(o*2+1,M+1,R);
           MAXN[o]=max(MAXN[o*2],MAXN[o*2+1]);
        }
    }
    LL query(int o,int L,int R)
    {
       int M=L+(R-L)/2;
       LL ans=-1000;
       if(ql<=L && R<=qr)
       return MAXN[o];
    
          if(ql<=M)
             ans=max(ans,query(o*2,L,M));
          if(M<qr)
            ans=max(ans,query(o*2+1,M+1,R));
            return  ans;
    
    }*/
    void init()
    {
        memset(count_,0,sizeof(count_));
        memset(MAXN,0,sizeof(MAXN));
    }
    LL Max(LL a,LL b)
    {
        if(a>=b)
            return a;
        else
            return b;
    }
    void RMQ_init(int t)
    {
      //for(int i=1;i<=n;i++)
        //d[i][0]=b[i];
       for(int j=1;(1<<j)<=t;j++)
       {
            for(int i=1;i<=t;i++)
       {
          if( (i+(1<<j)-1) <=t )
           {
               d[i][j]=max(d[i][j-1],d[i+(1<<(j-1))][j-1]);
               //printf("%d %d %lld
    ",i,j,d[i][j]);
           }
    
       }
          // printf("
    ");
       }
    
    }
    LL  RMQ(int L,int R,int t)
    {
       int k=0;
       while((1<<k+1)<= (R-L)+1 )  k++;
       return max(d[L][k],d[R-(1<<k)+1][k]);
    }
    
    int main()
    {
       while(~scanf("%d",&n) && n!=0)
       {
           scanf("%d",&q);
           init();
          int  t=0;
           a[0]=maxn;
          for(int i=1;i<=n;i++)
          {
             scanf("%d",&a[i]);
             if(a[i]==a[i-1])
             {
                 count_[t]++;
                 num[i]=t;
             }
             else
             {
                 if(t!=0)
                 {
                   for(int k=i-count_[t];k<=i-1;k++)
                 {
                     Left[k]=(i-count_[t]);
                     Right[k]=i-1;
                 }
                 }
    
                 value[++t]=a[i];
                 ++count_[t];
                 num[i]=t;
             }
          }
          for(int k=n-count_[t]+1;k<=n;k++)
                 {
                     Left[k]=(n-count_[t]+1);
                     Right[k]=n;
                 }
            for(int i=1;i<=t;i++)
            {
              //  cout<<count_[i]<<" ";
               // p=i;
                //v=count_[i];
               // update(1,1,t);
                d[i][0]=count_[i];
            }
            RMQ_init(t);
         // for(int i=1;i<=7;i++)
             // printf("%d ",MAXN[i]);
         /* for(int i=1;i<=n;i++)
          {
              printf("%d %d
    ",Left[i],Right[i]);
          }
          printf("
    ");
          */int LLL,RRR;
          for(int j=1;j<=q;j++)
          {
              LL answer=0;
              scanf("%d%d",&LLL,&RRR);
              if(Right[LLL]==Right[RRR] && Left[LLL]==Left[RRR])
                printf("%d
    ",(RRR-LLL)+1);
              else
              {
                  answer=Max(answer,Right[LLL]-LLL+1);
              answer=Max(answer,RRR-Left[RRR]+1);
              ql=num[LLL]+1;qr=num[RRR]-1;
             /* cout<<Right[LLL]-LLL+1<<endl;
             cout<<RRR-Left[RRR]+1<<endl;
             cout<<ql<<endl;
             cout<<qr<<endl;
    
              */if(ql<=qr)
              answer=Max(answer,RMQ(ql,qr,t));
              //cout<<query(1,1,t)<<endl;
                printf("%lld
    ",answer);
              }
    
          }
    
       }
        return 0;
    }
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #define maxn 100100
    #define LL long long
    using namespace std;
    
    int value[maxn];
    int count_[maxn];
    int num[maxn];
    int Left[maxn];
    int Right[maxn];
    int a[maxn];
    LL MAXN[maxn*4];
    int n,q;
    
    int op,ql,qr,p,v;
    void update(int o,int L,int R)
    {
       int M=L+(R-L)/2;
       if(L==R)
        MAXN[o]=v;
        else
        {
              if(p<=M)
            update(o*2,L,M);
                else
            update(o*2+1,M+1,R);
           MAXN[o]=max(MAXN[o*2],MAXN[o*2+1]);
        }
    }
    LL query(int o,int L,int R)
    {
       int M=L+(R-L)/2;
       LL ans=-1000;
       if(ql<=L && R<=qr)
       return MAXN[o];
    
          if(ql<=M)
             ans=max(ans,query(o*2,L,M));
          if(M<qr)
            ans=max(ans,query(o*2+1,M+1,R));
            return  ans;
    
    }
    void init()
    {
        memset(count_,0,sizeof(count_));
        memset(MAXN,0,sizeof(MAXN));
    }
    LL Max(LL a,LL b)
    {
        if(a>=b)
            return a;
        else
            return b;
    }
    int main()
    {
       while(~scanf("%d",&n) && n!=0)
       {
           scanf("%d",&q);
           init();
           int t=0;
           a[0]=maxn;
          for(int i=1;i<=n;i++)
          {
             scanf("%d",&a[i]);
             if(a[i]==a[i-1])
             {
                 count_[t]++;
                 num[i]=t;
             }
             else
             {
                 if(t!=0)
                 {
                   for(int k=i-count_[t];k<=i-1;k++)
                 {
                     Left[k]=(i-count_[t]);
                     Right[k]=i-1;
                 }
                 }
    
                 value[++t]=a[i];
                 ++count_[t];
                 num[i]=t;
             }
          }
          for(int k=n-count_[t]+1;k<=n;k++)
                 {
                     Left[k]=(n-count_[t]+1);
                     Right[k]=n;
                 }
            for(int i=1;i<=t;i++)
            {
              //  cout<<count_[i]<<" ";
                p=i;
                v=count_[i];
                update(1,1,t);
            }
         // for(int i=1;i<=7;i++)
             // printf("%d ",MAXN[i]);
         /* for(int i=1;i<=n;i++)
          {
              printf("%d %d
    ",Left[i],Right[i]);
          }
          printf("
    ");
          */int LLL,RRR;
          for(int j=1;j<=q;j++)
          {
              LL answer=0;
              scanf("%d%d",&LLL,&RRR);
              if(Right[LLL]==Right[RRR] && Left[LLL]==Left[RRR])
                printf("%d
    ",(RRR-LLL)+1);
              else
              {
                  answer=Max(answer,Right[LLL]-LLL+1);
              answer=Max(answer,RRR-Left[RRR]+1);
              ql=num[LLL]+1;qr=num[RRR]-1;
             /* cout<<Right[LLL]-LLL+1<<endl;
             cout<<RRR-Left[RRR]+1<<endl;
             cout<<ql<<endl;
             cout<<qr<<endl;
    
              */if(ql<=qr)
              answer=Max(answer,query(1,1,t));
              //cout<<query(1,1,t)<<endl;
                printf("%lld
    ",answer);
              }
    
          }
    
       }
        return 0;
    }
  • 相关阅读:
    vscode使用SSH Targets连接远程系统进行开发
    python2.7版本安装pip
    ubuntu系统安装最新版本nodejs
    win7安装yarn后执行报错
    Object合并,并使用默认值处理
    解决JSON.stringify序列化循环依赖对象报错
    docker环境下安装maven私服和gitlab
    单例模式的无锁实现
    【Java学习笔记】Java的垃圾回收机制
    Ubuntu下源码安装Python
  • 原文地址:https://www.cnblogs.com/xianbin7/p/4530859.html
Copyright © 2011-2022 走看看