zoukankan      html  css  js  c++  java
  • 转载 libsvm vc 移植 实现多类分类

    http://zllxsha.blog.163.com/blog/static/50555091201010981932412/ by piglet

    在网上找了很久关于libsvm 在vc上的移植,网上大部分讲的都是两类的分类

    在此分享下,我实现了多类的分类

    代码对于提取的数据,可能在部分的地方需要修改,比如样本的个数等

    当然,工程中需要包含svm.h,svm.cpp

    代码如下:

    #include <stdio.h>
    #include <ctype.h>
    #include <list>
    #include "svm.h"    //包涵本目录下的SVM.H头文件
    #include <fstream>
    #include <iostream>
    #include <string>
        
    using namespace std;
    void main()
    {
        /*
        struct svm_problem
        {
            int l;
            double *y;
            struct svm_node **x;
        };
        struct svm_node
        {
            int index;
            double value;
        };
        */
        ifstream inFile;
        ifstream inFile1;
     ofstream outFile("out.txt");
     ofstream outFile1("out2.txt");
        svm_problem prob;                    //建立SVM数据
        prob.l=2262;                            //80个样本,前40个为正样本,train.1.txt=3089,train.2.txt = 2262
        double d[2262];
        int probfeature=6;                    //样本特征维数
        prob.y=new double[prob.l];
        svm_parameter param;
        
        //svm参数设置
        param.svm_type = C_SVC;
        param.kernel_type = RBF;
        param.degree = 3;
        param.gamma = 0.0001;
        param.coef0 = 0;
        param.nu = 0.5;
        param.cache_size = 100;
        param.C = 10;
        param.eps = 1e-5;
        param.p = 0.1;
        param.shrinking = 1;
        param.probability = 0;
        param.nr_weight = 0;
        param.weight_label = NULL;
        param.weight = NULL;
    
        
            //分类
            if(param.gamma == 0) param.gamma = 0.5;                //gamma for  poly/rbf/sigmoid
            svm_node *x_space = new svm_node[(probfeature+1) * prob.l];       //样本特征存储空间
            prob.x = new svm_node *[prob.l];                    //每一个X指向一个样本
            //数据填充开始
             inFile.open("train.2.txt");                            //打开训练数据文件
            
            for(int i=0;i<prob.l;i++)//prob.l 总样本数
            {
            /**/
                float fvalue;
       int cn,cn2;
       char ch;
       inFile>>cn;
       outFile<<cn<<" ";
                for (int j=0;j<probfeature;j++)
                {
        
                    inFile>>cn2>>ch>>fvalue;
                    if(fvalue!=0.0)
                    {
                        x_space[(probfeature+1)*i+j].index=j+1;
                        x_space[(probfeature+1)*i+j].value=fvalue;
                    }
        outFile<<cn2<<ch<<fvalue<<" ";
                }
                x_space[(probfeature+1)*i+probfeature].index=-1;
                prob.x[i]=&x_space[(probfeature+1)*i];
       prob.y[i] = cn;
       outFile<<prob.y[i]<<endl;
       
       //         if (i<2000)                                        //类别标签,两类的时候
       //{
       //             prob.y[i]=1;
       // outFile<<"1"<<endl;
       //}
       //         else
       //{
       //             prob.y[i]=-1;
       // outFile<<"-1"<<endl;
       //}
            }
      outFile.close();
            inFile.close();                                        //关闭文件
    
            //数据填充结束
            // build model & classify
            svm_model *model = svm_train(&prob, &param);    //开始训练
            int test_num=1109;                              //test.1.txt = 4000; test.2.txt = 1109
            inFile1.open("test.2.txt");
            svm_node x[7];                                    //定义一个测试样本
      double d2[1109];
      int right=0;
        
            for(int i1=0;i1<test_num;i1++)
            { 
                float fvalue;
       int cn,cn2;
       char ch;
       inFile1>>cn;
       outFile1<<cn<<" ";
                for (int j=0;j<probfeature;j++)
                {
                    inFile1>>cn2>>ch>>fvalue;
        //cout<<"fvalue: "<<fixed<<fvalue<<endl;
                    if(fvalue!=0.0)
                    {
                        x[j].index=j+1;
                        x[j].value=fvalue;
         //cout<<x[j].index<<"   "<<x[j].value<<endl;
                    }
        outFile1<<cn2<<ch<<fvalue<<" ";
                }    
                x[7].index=-1;////////////********************为什么要多一个值,而且还是空的*****************?????//////
       
             d2[i1]=svm_predict(model,x);
       //cout<<"cn: "<<cn<<"  d2[i1]: "<<d2[i1]<<"  "<<endl;
       outFile1<<d2[i1]<<endl;
       if(d2[i1] == cn)
        right++;
       //if(cn==1&&d2[i1]==1)//当2类的时候,判断分类
       // right++;
       //if(cn==0&&d2[i1]==-1)
       // right++;
            }
            inFile1.close();
      //outFile1.close();
      x[0].index=1;
      x[0].value = 0.2;
      x[1].index=2;
      x[1].value = 0.2;
      x[2].index=3;
      x[2].value = 0.2;
      x[3].index=4;
      x[3].value = 0.2;
    
      cout<<"svm_predict(model,x): "<<svm_predict(model,x)<<endl;
            svm_destroy_model(model);
            delete[] x_space;
            delete[] prob.x;
            delete[] prob.y;
      cout<<"accuracy: "<<right<<"/"<<test_num<<"    "<<(float)right/(float)test_num<<endl;
    
    }
    

      

  • 相关阅读:
    汇付 支付,痛苦的接入过程
    路由集合中已存在名为“ XXXX” 的路由
    博客目录
    (转载)为什么使用APP Bundle
    安卓基础:后台任务
    安卓基础:应用权限
    安卓资源的使用 二
    kotlin学习三:lambda 和内联函数
    kotlin学习二:函数
    kotlin学习一:基础语法
  • 原文地址:https://www.cnblogs.com/xiangshancuizhu/p/2149027.html
Copyright © 2011-2022 走看看