zoukankan      html  css  js  c++  java
  • Prometheus学习

    1.Prometheus简介

      Prometheus受启发于Google的Brogmon监控系统(相似的Kubernetes是从Google的Brog系统演变而来),从2012年开始由前Google工程师在Soundcloud以开源软件的形式进行研发,并且于2015年早期对外发布早期版本。2016年5月继Kubernetes之后成为第二个正式加入CNCF基金会的项目,同年6月正式发布1.0版本。2017年底发布了基于全新存储层的2.0版本,能更好地与容器平台、云平台配合。

    • 长期趋势分析:通过对监控样本数据的持续收集和统计,对监控指标进行长期趋势分析。例如,通过对磁盘空间增长率的判断,我们可以提前预测在未来什么时间节点上需要对资源进行扩容。
    • 对照分析:两个版本的系统运行资源使用情况的差异如何?在不同容量情况下系统的并发和负载变化如何?通过监控能够方便的对系统进行跟踪和比较。
    • 告警:当系统出现或者即将出现故障时,监控系统需要迅速反应并通知管理员,从而能够对问题进行快速的处理或者提前预防问题的发生,避免出现对业务的影响。
    • 故障分析与定位:当问题发生后,需要对问题进行调查和处理。通过对不同监控监控以及历史数据的分析,能够找到并解决根源问题。
    • 数据可视化:通过可视化仪表盘能够直接获取系统的运行状态、资源使用情况、以及服务运行状态等直观的信息。

      Prometheus的优势 

      易于管理:   

        Prometheus核心部分只有一个单独的二进制文件,不存在任何的第三方依赖(数据库,缓存等等)。唯一需要的就是本地磁盘,因此不会有潜在级联故障的风险。

        Prometheus基于Pull模型的架构方式,可以在任何地方(本地电脑,开发环境,测试环境)搭建我们的监控系统。对于一些复杂的情况,还可以使用Prometheus服务发现(Service Discovery)的能力动态管理监控目标

      监控服务的内部运行状态:

        prometheus鼓励用户监控服务的内部状态,基于Prometheus丰富的Client库,用户可以轻松的在应用程序中添加对Prometheus的支持,从而让用户可以获取服务和应用内部真正的运行状态。

      强大的数据模型:

        所有采集的监控数据均以指标(metric)的形式保存在内置的时间序列数据库当中(TSDB)。所有的样本除了基本的指标名称以外,还包含一组用于描述该样本特征的标签 

      强大的查询语言PromQL:

        Prometheus内置了一个强大的数据查询语言PromQL。 通过PromQL可以实现对监控数据的查询、聚合。同时PromQL也被应用于数据可视化(如Grafana)以及告警当中。

        通过PromQL可以轻松回答类似于以下问题:

    • 在过去一段时间中95%应用延迟时间的分布范围?
    • 预测在4小时后,磁盘空间占用大致会是什么情况?
    • CPU占用率前5位的服务有哪些?(过滤)

      高效

        对于监控系统而言,大量的监控任务必然导致有大量的数据产生。而Prometheus可以高效地处理这些数据,对于单一Prometheus Server实例而言它可以处理:

    • 数以百万的监控指标
    • 每秒处理数十万的数据点。

      可扩展

        Prometheus是如此简单,因此你可以在每个数据中心、每个团队运行独立的Prometheus Sevrer。Prometheus对于联邦集群的支持,可以让多个Prometheus实例产生一个逻辑集群,当单实例Prometheus Server处理的任务量过大时,通过使用功能分区(sharding)+联邦集群(federation)可以对其进行扩展。

      易于集成

        使用Prometheus可以快速搭建监控服务,并且可以非常方便地在应用程序中进行集成。目前支持: Java, JMX, Python, Go,Ruby, .Net, Node.js等等语言的客户端SDK,基于这些SDK可以快速让应用程序纳入到Prometheus的监控当中,或者开发自己的监控数据收集程序。同时这些客户端收集的监控数据,不仅仅支持Prometheus,还能支持Graphite这些其他的监控工具。

      可视化

        Prometheus Server中自带了一个Prometheus UI,通过这个UI可以方便地直接对数据进行查询,并且支持直接以图形化的形式展示数据。同时Prometheus还提供了一个独立的基于Ruby On Rails的Dashboard解决方案Promdash。最新的Grafana可视化工具也已经提供了完整的Prometheus支持,基于Grafana可以创建更加精美的监控图标。基于Prometheus提供的API还可以实现自己的监控可视化UI。

      开放性   

        通常来说当我们需要监控一个应用程序时,一般需要该应用程序提供对相应监控系统协议的支持。因此应用程序会与所选择的监控系统进行绑定。为了减少这种绑定所带来的限制。对于决策者而言要么你就直接在应用中集成该监控系统的支持,要么就在外部创建单独的服务来适配不同的监控系统。

        而对于Prometheus来说,使用Prometheus的client library的输出格式不止支持Prometheus的格式化数据,也可以输出支持其它监控系统的格式化数据,比如Graphite。

        因此你甚至可以在不使用Prometheus的情况下,采用Prometheus的client library来让你的应用程序支持监控数据采集。

    探索PromQL

      在time-series中的每一个点称为一个样本(sample),样本由以下三部分组成:

    • 指标(metric):metric name和描述当前样本特征的labelsets;
    • 时间戳(timestamp):一个精确到毫秒的时间戳;
    • 样本值(value): 一个float64的浮点型数据表示当前样本的值。
    <--------------- metric ---------------------><-timestamp -><-value->
    http_request_total{status="200", method="GET"}@1434417560938 => 94355
    http_request_total{status="200", method="GET"}@1434417561287 => 94334
    http_request_total{status="404", method="GET"}@1434417560938 => 38473
    http_request_total{status="404", method="GET"}@1434417561287 => 38544
    http_request_total{status="200", method="POST"}@1434417560938 => 4748
    http_request_total{status="200", method="POST"}@1434417561287 => 4785
    

      Prometheus定义了4种不同的指标类型(metric type):

        Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

        Counter:只增不减的计数器   

        Gauge:可增可减的仪表盘

        

    人生就是要不断折腾
  • 相关阅读:
    【leetcode】 61. 旋转链表
    【leetcode】 55 跳跃游戏
    【leetcode 53】 最大子序和
    【leetcode】不同路径
    【leetcode】692. 前K个高频单词
    vue a标签使用@click
    函数式接口的使用
    【转】MyBatis中的collection两种使用方法
    xaf--homepage
    Windows10--设置鼠标自带光圈效果
  • 原文地址:https://www.cnblogs.com/xiangxiaolin/p/14836708.html
Copyright © 2011-2022 走看看