[BZOJ3160]万径人踪灭
试题描述
输入
输出
见“输入”
输入示例
见“输入”
输出示例
见“输入”
数据规模及规定
题解
问题分为两部分:
一. 对于每一个分界点(某个位置)或分界线(某两个位置中间),要求这么一个东西
意思就是回文串要求左半部分与右半部分对称,那么找到这些对称的位置,每个位置有选择或者不选两种情况,所以是 2 的那么多次方。
求法:因为原串只有 a, b 两种字符,所以把 a 设成 1,b 设成 0 求一次卷积,再把 b 设成 1,a 设成 0 求一次卷积,加起来即可。
二. 排除连续的情况
hash + 二分。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <stack> #include <vector> #include <queue> #include <cstring> #include <string> #include <map> #include <set> using namespace std; const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } int read() { int x = 0, f = 1; char c = Getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); } return x * f; } #define maxn 260010 #define MOD 1000000007 #define ULL unsigned long long const double pi = acos(-1.0); int n; ULL hashl[maxn], hashr[maxn], hashl2[maxn], hashr2[maxn], id2[maxn], id3[maxn]; char S[maxn]; struct Complex { double a, b; Complex() { a = b = 0.0; } Complex operator + (const Complex& t) const { Complex ans; ans.a = a + t.a; ans.b = b + t.b; return ans; } Complex operator - (const Complex& t) const { Complex ans; ans.a = a - t.a; ans.b = b - t.b; return ans; } Complex operator * (const Complex& t) const { Complex ans; ans.a = a * t.a - b * t.b; ans.b = a * t.b + b * t.a; return ans; } Complex operator *= (const Complex& t) { *this = *this * t; return *this; } } a[maxn<<1], b[maxn<<1]; int tar[maxn]; void FFT(Complex* a, int n, int tp) { for(int i = 0; i < n; i++) if(i < tar[i]) swap(a[i], a[tar[i]]); for(int i = 1; i < n; i <<= 1) { Complex w, wn; wn.a = cos(pi / i); wn.b = sin(pi / i) * tp; for(int j = 0; j < n; j += (i << 1)) { w.a = 1.0; w.b = 0.0; for(int k = 0; k < i; k++) { Complex t1 = a[j+k], t2 = a[j+k+i] * w; a[j+k] = t1 + t2; a[j+k+i] = t1 - t2; w *= wn; } } } if(tp < 0) for(int i = 0; i <= n; i++) a[i].a = a[i].a / (double)n + .5; return ; } ULL lstr(int l, int r) { l++, r++; return hashl[r] - hashl[l-1] * id2[r-l+1]; } ULL rstr(int l, int r) { l++, r++; return hashr[l] - hashr[r+1] * id2[r-l+1]; } ULL lstr2(int l, int r) { l++, r++; return hashl2[r] - hashl2[l-1] * id3[r-l+1]; } ULL rstr2(int l, int r) { l++, r++; return hashr2[l] - hashr2[r+1] * id3[r-l+1]; } int two[maxn], ans, Len; bool check(int i, int mid) { int ll = (i >> 1) - mid + 1, lr = (i >> 1), rl = (i & 1) ? (i >> 1) + 1 : lr, rr = rl + mid - 1; bool res = ll >= 0 && rr < Len && (rstr(ll, lr) == lstr(rl, rr)) && (rstr2(ll, lr) == lstr2(rl, rr)); // if((i >> 1) == 127) printf("%d(%c) %d(%c) %d(%c) %d(%c) %llu %llu ", ll, S[ll], lr, S[lr], rl, S[rl], rr, S[rr], rstr(ll, lr), lstr(rl, rr)); return ll >= 0 && rr < Len && rstr(ll, lr) == lstr(rl, rr) && rstr2(ll, lr) == lstr2(rl, rr); } int main() { scanf("%s", S); int m = strlen(S) - 1; Len = strlen(S); int L = 0; for(n = 1; n <= (m << 1); n <<= 1) L++; for(int i = 0; i < n; i++) tar[i] = (tar[i>>1] >> 1) | ((i & 1) << L - 1); for(int i = 0; i <= m; i++) a[i].a = (double)(S[i] == 'a'); FFT(a, n, 1); for(int i = 0; i <= n; i++) a[i] *= a[i]; for(int i = 0; i <= m; i++) b[i].a = (double)(S[i] == 'b'); FFT(b, n, 1); for(int i = 0; i <= n; i++) b[i] *= b[i], a[i] = a[i] + b[i]; FFT(a, n, -1); for(int i = 0; i <= (m << 1); i++) a[i].a = (double)((int)a[i].a + 1 >> 1), b[i].a = (double)((int)b[i].a + 1 >> 1); // for(int i = 0; i <= (m << 1); i++) printf("%d ", (int)a[i].a); putchar(' '); two[0] = 1; for(int i = 1; i <= m; i++) { two[i] = two[i-1] << 1; if(two[i] > MOD) two[i] -= MOD; } hashl[0] = 0; for(int i = 1; i <= m + 1; i++) hashl[i] = hashl[i-1] * 2 + S[i-1] - 'a'; hashr[m+2] = 0; for(int i = m + 1; i; i--) hashr[i] = hashr[i+1] * 2 + S[i-1] - 'a'; id2[0] = 1; for(int i = 1; i <= m + 1; i++) id2[i] = id2[i-1] * 2; hashl2[0] = 0; for(int i = 1; i <= m + 1; i++) hashl2[i] = hashl2[i-1] * 3 + S[i-1] - 'a'; hashr2[m+2] = 0; for(int i = m + 1; i; i--) hashr2[i] = hashr2[i+1] * 3 + S[i-1] - 'a'; id3[0] = 1; for(int i = 1; i <= m + 1; i++) id3[i] = id3[i-1] * 3; m++, m <<= 1; int tmp = 0; for(int i = 0; i <= m - 2; i++) { ans += two[(int)a[i].a]; int l = 0, r = min((i >> 1) + 1, (i & 1) ? (m >> 1) - (i >> 1) : (m >> 1) - (i >> 1) + 1) + 1; while(l < r - 1) { int mid = l + r >> 1; if(check(i, mid)) l = mid; else r = mid; } if(check(i, l + 1)) l++; ans -= l + 1; if(ans < 0) ans += MOD; if(ans > MOD) ans -= MOD; } printf("%d ", ans); return 0; } /* abaabaa */
当然也可以用 manacher。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <algorithm> #include <cmath> using namespace std; int read() { int x = 0, f = 1; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); } return x * f; } #define maxn 100010 #define maxN 262150 #define MOD 1000000007 const double pi = acos(-1.0); char S[maxn], Str[maxn<<1]; int Len[maxn<<1], alp[maxn<<1]; struct Vec { double x, y; Vec() {} Vec(double _, double __): x(_), y(__) {} Vec operator + (const Vec& t) const { return Vec(x + t.x, y + t.y); } Vec operator - (const Vec& t) const { return Vec(x - t.x, y - t.y); } Vec operator * (const Vec& t) const { return Vec(x * t.x - y * t.y, x * t.y + t.x * y); } Vec operator *= (const Vec& t) { *this = *this * t; return *this; } Vec operator = (const bool& t) { this->x = t; this->y = 0; return *this; } } A[maxN], B[maxN]; int tar[maxN]; void FFT_init(int K) { int n = 1 << K; for(int i = 0; i < n; i++) { tar[i] = 0; for(int j = 0; j < K; j++) tar[i] = tar[i] << 1 | (i >> j & 1); } return ; } void FFT(Vec x[], int K, int fl) { int n = 1 << K; for(int i = 0; i < n; i++) if(i < tar[i]) swap(x[i], x[tar[i]]); for(int i = 1; i <= K; i++) { Vec w, wn(cos(2.0 * pi / (1 << i)), sin(2.0 * pi / (1 << i)) * fl); for(int j = 0; j < n; j += (1 << i)) { w = Vec(1, 0); for(int k = j; k < j + (1 << i - 1); k++, w *= wn) { Vec t1 = x[k], t2 = w * x[k+(1<<i-1)]; x[k] = t1 + t2; x[k+(1<<i-1)] = t1 - t2; } } } return ; } int two[maxN]; int main() { scanf("%s", S); int n = strlen(S); for(int i = 0; i < n; i++) A[i] = S[i] == 'a', B[i] = S[i] == 'b'; int m = (n << 1) - 1, K = 0; for(n = 1; n < m; n <<= 1) K++; FFT_init(K); FFT(A, K, 1); FFT(B, K, 1); for(int i = 0; i < n; i++) A[i] *= A[i], B[i] *= B[i]; FFT(A, K, -1); FFT(B, K, -1); two[0] = 1; for(int i = 1; i <= n; i++) { two[i] = two[i-1] << 1; if(two[i] >= MOD) two[i] -= MOD; } int ans = 0; for(int i = 0; i < m; i++) { int a = A[i].x / n + .5, b = B[i].x / n + .5; ans += two[a+b+1>>1] - 1; // printf("%d %d %d ", a, b, a + b + 1 >> 1); if(ans >= MOD) ans -= MOD; } n = strlen(S); for(int i = 1; i <= n; i++) Str[(i<<1)-1] = S[i-1], Str[i<<1] = '#'; n <<= 1; for(int i = 1; i <= n; i++) alp[i] = alp[i-1] + ('a' <= Str[i] && Str[i] <= 'z'); // puts(Str + 1); int mxp = 0; for(int i = 1; i <= n; i++) { int mxr = mxp + Len[mxp] - 1; if(mxr >= i) Len[i] = max(min(Len[(mxp<<1)-i], mxr - i + 1), 1); else Len[i] = 1; while(1 <= i - Len[i] + 1 && i + Len[i] - 1 <= n && Str[i-Len[i]+1] == Str[i+Len[i]-1]) Len[i]++; Len[i]--; if(mxr < i + Len[i] - 1) mxp = i; // printf("%d%c", Len[i], i < n ? ' ' : ' '); ans -= alp[i+Len[i]-1] - alp[i-1]; if(ans < 0) ans += MOD; } printf("%d ", ans); return 0; }