zoukankan      html  css  js  c++  java
  • [POJ3277]City Horizon

    [POJ3277]City Horizon

    试题描述

    Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at the city horizon and observe the beautiful silhouettes formed by the rectangular buildings.

    The entire horizon is represented by a number line with N (1 ≤ N ≤ 40,000) buildings. Building i's silhouette has a base that spans locations Ai through Bi along the horizon (1 ≤ Ai < Bi ≤ 1,000,000,000) and has height Hi (1 ≤ Hi ≤ 1,000,000,000). Determine the area, in square units, of the aggregate silhouette formed by all N buildings.

    输入

    Line 1: A single integer: N Lines 2..N+1: Input line i+1 describes building i with three space-separated integers: Ai, Bi, and Hi

    输出

    Line 1: The total area, in square units, of the silhouettes formed by all N buildings

    输入示例

    4
    2 5 1
    9 10 4
    6 8 2
    4 6 3

    输出示例

    16

    数据规模及约定
    见“试题描述

    题解

    上一题的代码改一改就好了。

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    
    int read() {
    	int x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    	return x * f;
    }
    
    #define maxn 40010
    #define LL long long
    int n, cnt, ca, cd;
    struct Rec {
    	LL x1, y1, x2, y2;
    	Rec() {}
    	Rec(LL _1, LL _2, LL _3, LL _4): x1(_1), y1(_2), x2(_3), y2(_4) {}
    } rs[maxn];
    struct Rec_int { int x1, y1, x2, y2; } rsi[maxn];
    LL num[maxn<<1], A[maxn<<1], B[maxn<<1];
    struct Line {
    	int l, r, x;
    	Line() {}
    	Line(int _1, int _2, int _3): l(_1), r(_2), x(_3) {}
    	bool operator < (const Line& t) const { return x < t.x; }
    } ad[maxn], de[maxn];
    
    LL sumv[maxn<<3];
    int addv[maxn<<3];
    void build(int L, int R, int o) {
    	if(L == R) {
    		sumv[o] = 0;
    		addv[o] = 0;
    		return ;
    	}
    	int M = L + R >> 1, lc = o << 1, rc = lc | 1;
    	build(L, M, lc); build(M+1, R, rc);
    	sumv[o] = 0; addv[o] = 0;
    	return ;
    }
    void update(int L, int R, int o, int ql, int qr, int v) {
    	int M = L + R >> 1, lc = o << 1, rc = lc | 1;
    	if(ql <= L && R <= qr) {
    		addv[o] += v;
    		if(addv[o]) sumv[o] = A[R] - A[L-1];
    		else if(L == R) sumv[o] = 0;
    		else sumv[o] = sumv[lc] + sumv[rc];
    		return ;
    	}
    	if(ql <= M) update(L, M, lc, ql, qr, v);
    	if(qr > M) update(M+1, R, rc, ql, qr, v);
    	sumv[o] = addv[o] ? A[R] - A[L-1] : sumv[lc] + sumv[rc];
    	return ;
    }
    
    int main() {
    	int kase = 0;
    	n = read();
    	cnt = 0;
    	for(int i = 1; i <= n; i++) {
    		int l = read(), r = read(), h = read();
    		rs[i] = Rec(l, 0, r, h);
    		num[++cnt] = l; num[++cnt] = r;
    	}
    	sort(num + 1, num + cnt + 1);
    	cnt = unique(num + 1, num + cnt + 1) - num - 1;
    	int tcnt = cnt;
    	for(int i = 1; i < cnt; i++) A[i] = num[i+1] - num[1];
    	for(int i = 1; i <= n; i++) {
    		rsi[i].x1 = lower_bound(num + 1, num + cnt + 1, rs[i].x1) - num;
    		rsi[i].x2 = lower_bound(num + 1, num + cnt + 1, rs[i].x2) - num - 1;
    	}
    	cnt = 0;
    	for(int i = 1; i <= n; i++)
    		num[++cnt] = rs[i].y1, num[++cnt] = rs[i].y2;
    	sort(num + 1, num + cnt + 1);
    	cnt = unique(num + 1, num + cnt + 1) - num - 1;
    	for(int i = 1; i < cnt; i++) B[i] = num[i+1] - num[i];
    	ca = cd = 0;
    	for(int i = 1; i <= n; i++) {
    		rsi[i].y1 = lower_bound(num + 1, num + cnt + 1, rs[i].y1) - num;
    		rsi[i].y2 = lower_bound(num + 1, num + cnt + 1, rs[i].y2) - num;
    		ad[++ca] = Line(rsi[i].x1, rsi[i].x2, rsi[i].y1);
    		de[++cd] = Line(rsi[i].x1, rsi[i].x2, rsi[i].y2);
    	}
    	
    	sort(ad + 1, ad + ca + 1);
    	sort(de + 1, de + cd + 1);
    	LL ans = 0;
    	int ka = 1, kd = 1;
    	build(1, tcnt, 1);
    	for(int i = 1; i <= cnt; i++) {
    		while(ka <= ca && ad[ka].x == i)
    			update(1, tcnt, 1, ad[ka].l, ad[ka].r, 1), ka++;
    		while(kd <= cd && de[kd].x == i)
    			update(1, tcnt, 1, de[kd].l, de[kd].r, -1), kd++;
    		if(i < cnt) ans += sumv[1] * B[i];
    	}
    	printf("%lld
    ", ans);
    	
    	return 0;
    }
    
  • 相关阅读:
    lambda表达式
    C#_单例模式
    Authorize的Forms认证
    10. windows下原来可以这样隐藏webshell
    8. php回调后门
    7. 编辑器漏洞整理
    6. webshell文件上传分析溯源
    1.5 webshell文件上传漏洞分析溯源(1~4)
    1.4 DVWA亲测文件上传漏洞
    1.3 任意文件查看与下载漏洞
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/5960700.html
Copyright © 2011-2022 走看看