[codeforces494B]Obsessive String
试题描述
Hamed has recently found a string t and suddenly became quite fond of it. He spent several days trying to find all occurrences of t in other strings he had. Finally he became tired and started thinking about the following problem. Given a string s how many ways are there to extract k ≥ 1 non-overlapping substrings from it such that each of them contains string t as a substring? More formally, you need to calculate the number of ways to choose two sequences a1, a2, ..., ak and b1, b2, ..., bksatisfying the following requirements:
- k ≥ 1
- t is a substring of string sa_isa_i + 1... sb_i (string s is considered as 1-indexed).
As the number of ways can be rather large print it modulo 109 + 7.
输入
Input consists of two lines containing strings s and t (1 ≤ |s|, |t| ≤ 105). Each string consists of lowercase Latin letters.
输出
Print the answer in a single line.
输入示例
welcometoroundtwohundredandeightytwo
d
输出示例
274201
数据规模及约定
见“输入”
题解
首先用 KMP 预处理一波数组 pos[i],表示串 s 第 i 位左边最靠右的那次对于 t 的完整匹配的左端点(有点拗口,举个栗子 s = "ababa",那么 pos[i] = {0, 0, 1, 1, 3})。
有了 pos 数组,就可以 dp 了。我们考虑每个位置放置一个左端点,或是一个右端点,或者不放(注意不放有两种情况,一种是刚放完左端点,一种是刚放完右端点);于是设 f[i][0] 表示最后一次放的是左端点,放在了位置 i 或者 i 的左边;f[i][1] 表示最后一次放的是右端点,放在了位置 i 或 i 的左边。转移时就是考虑当前这个位置放置还是不放,具体转移方程留给读者思考。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <algorithm> using namespace std; int read() { int x = 0, f = 1; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); } while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); } return x * f; } #define maxn 100010 #define MOD 1000000007 char S[maxn], T[maxn]; int Fail[maxn], pos[maxn], f[maxn][2]; int main() { scanf("%s%s", S + 1, T + 1); int n = strlen(S + 1), m = strlen(T + 1); for(int i = 2; i <= m + 1; i++) { int j = Fail[i-1]; while(j > 1 && T[j] != T[i-1]) j = Fail[j]; Fail[i] = T[j] == T[i-1] ? j + 1 : 1; } int p = 1; for(int i = 1; i <= n; i++) { while(p > 1 && T[p] != S[i]) p = Fail[p]; p = T[p] == S[i] ? p + 1 : 1; if(p == m + 1) pos[i] = i - m + 1; } for(int i = 1; i <= n; i++) if(!pos[i]) pos[i] = pos[i-1]; // for(int i = 1; i <= n; i++) printf("%d%c", pos[i], i < n ? ' ' : ' '); f[0][1] = 1; for(int i = 1; i <= n; i++) { f[i][0] = (f[i-1][0] + f[i-1][1]) % MOD; f[i][1] = (f[i-1][1] + (pos[i] ? f[pos[i]][0] : 0)) % MOD; // printf("(%d, %d)%c", f[i][0], f[i][1], i < n ? ' ' : ' '); } printf("%d ", (f[n][1] ? f[n][1] : MOD) - 1); return 0; }