1、学习前的基本配置
我的Python用的是Anaconda,因为其自带了很多的包,基本会使用到的都无需再自己去安装
IDE使用的是Pycharm,具体pip list如下图所示
2、学习笔记
(1)机器学习概论
机器学习一般流程:
机器学习数学基础:
(2)Python基础
3、机器学习分类与理解
机器学习通常分为3类
监督学习
半监督学习
无监督学习
监督学习
给出特征和标签让机器学习两者之间的联系,在单独给出特征没有标签的数据时,可以判断出标签。就类似人刷完题看答案,就了就巩固了知识,可以对题给出正确答案。
无监督学习
给出一大堆数据但不知道各自数据与特征间的关系,需要根据聚类或一定的模型得到数据之间的关系。就像小孩子认识东西的时候,看的东西多了久了也就知道哪些是椅子,桌子什么的。
半监督学习
半监督学习有少量有标签的数据以及大量无标签的数据,和现实的数据比较相符,需要利用好有标签的数据来提升模型泛化能力。而如何用好,就是半监督学习的重点了。
此外,还有很多机器学习的分类如:强化学习,批量学习和在线学习等等。