这本篇博客里面我想重点来分析一下ContentValues的源码以及它里面涉及到的继承接口Parcelabel,还有HashMap的源码。
相信使用过android里面数据库操作的朋友对于ContentValues一定不会感到陌生吧,它其实很像一个字典对象,可以用来存储键值对。比如代码如下:
ContentValues contentValues=new ContentValues(); contentValues.put("name","xiao"); contentValues.put("age",20); contentValues.put("isStudent",true);
你会发现ContentValues里面可以用来put各种类型的数据,它是怎样拥有这种神奇的功能的呢?下面让我们来看看它的源码。首先,是ContentValues类的定义:
public final class ContentValues implements Parcelable { }
我们可以看到它实现了Parcelabel接口,这个接口主要是用来实现数据安装、传输相关操作的。说到这里,让我们也来看看Parcelabel接口里面到底定义了哪些方法,源码如下:
public interface Parcelable { public static final int PARCELABLE_WRITE_RETURN_VALUE = 0x0001; public static final int CONTENTS_FILE_DESCRIPTOR = 0x0001; public int describeContents(); public void writeToParcel(Parcel dest, int flags); public interface Creator<T> { public T createFromParcel(Parcel source); public T[] newArray(int size); } public interface ClassLoaderCreator<T> extends Creator<T> { public T createFromParcel(Parcel source, ClassLoader loader); } }
我们可以看到里面有个writeToParcel方法是用来传输数据的,至于它是怎么用来包装数据的,就要看看具体实现Parcelabel接口类的实现了。
好了说回我们所要讨论的重点对象ContentValues,首先来看看ContentValues里面包括的构造函数,源码如下所示:
private HashMap<String, Object> mValues; public ContentValues() { // Choosing a default size of 8 based on analysis of typical // consumption by applications. mValues = new HashMap<String, Object>(8); } /** * Creates an empty set of values using the given initial size * * @param size the initial size of the set of values */ public ContentValues(int size) { mValues = new HashMap<String, Object>(size, 1.0f); } /** * Creates a set of values copied from the given set * * @param from the values to copy */ public ContentValues(ContentValues from) { mValues = new HashMap<String, Object>(from.mValues); } /** * Creates a set of values copied from the given HashMap. This is used * by the Parcel unmarshalling code. * * @param values the values to start with * {@hide} */ private ContentValues(HashMap<String, Object> values) { mValues = values; }
相信大家从注释里面就能够看看,ContentValues的构造主要是根据代码里面传入的具体参数来构造对应的HashMap对象,然后里面的各种put操作、get操作、remove操作都是针对HashMap进行的,其中put类型的方法源码如下:
public void put(String key, String value) { mValues.put(key, value); } public void putAll(ContentValues other) { mValues.putAll(other.mValues); } public void put(String key, Byte value) { mValues.put(key, value); } public void put(String key, Short value) { mValues.put(key, value); } public void put(String key, Integer value) { mValues.put(key, value); } public void put(String key, Long value) { mValues.put(key, value); } public void put(String key, Float value) { mValues.put(key, value); } public void put(String key, Double value) { mValues.put(key, value); } public void put(String key, Boolean value) { mValues.put(key, value); } public void put(String key, byte[] value) { mValues.put(key, value); } public void putNull(String key) { mValues.put(key, null); }
通过上面的方法,我们就能够明白为什么ContentValues能够put各种类型的数值了吧,接下来让我们来看看get方法,源码如下:
public Object get(String key) { return mValues.get(key); } public String getAsString(String key) { Object value = mValues.get(key); return value != null ? value.toString() : null; } public Long getAsLong(String key) { Object value = mValues.get(key); try { return value != null ? ((Number) value).longValue() : null; } catch (ClassCastException e) { if (value instanceof CharSequence) { try { return Long.valueOf(value.toString()); } catch (NumberFormatException e2) { Log.e(TAG, "Cannot parse Long value for " + value + " at key " + key); return null; } } else { Log.e(TAG, "Cannot cast value for " + key + " to a Long: " + value, e); return null; } } } public Integer getAsInteger(String key) { Object value = mValues.get(key); try { return value != null ? ((Number) value).intValue() : null; } catch (ClassCastException e) { if (value instanceof CharSequence) { try { return Integer.valueOf(value.toString()); } catch (NumberFormatException e2) { Log.e(TAG, "Cannot parse Integer value for " + value + " at key " + key); return null; } } else { Log.e(TAG, "Cannot cast value for " + key + " to a Integer: " + value, e); return null; } } } public Short getAsShort(String key) { Object value = mValues.get(key); try { return value != null ? ((Number) value).shortValue() : null; } catch (ClassCastException e) { if (value instanceof CharSequence) { try { return Short.valueOf(value.toString()); } catch (NumberFormatException e2) { Log.e(TAG, "Cannot parse Short value for " + value + " at key " + key); return null; } } else { Log.e(TAG, "Cannot cast value for " + key + " to a Short: " + value, e); return null; } } } public Byte getAsByte(String key) { Object value = mValues.get(key); try { return value != null ? ((Number) value).byteValue() : null; } catch (ClassCastException e) { if (value instanceof CharSequence) { try { return Byte.valueOf(value.toString()); } catch (NumberFormatException e2) { Log.e(TAG, "Cannot parse Byte value for " + value + " at key " + key); return null; } } else { Log.e(TAG, "Cannot cast value for " + key + " to a Byte: " + value, e); return null; } } } public Double getAsDouble(String key) { Object value = mValues.get(key); try { return value != null ? ((Number) value).doubleValue() : null; } catch (ClassCastException e) { if (value instanceof CharSequence) { try { return Double.valueOf(value.toString()); } catch (NumberFormatException e2) { Log.e(TAG, "Cannot parse Double value for " + value + " at key " + key); return null; } } else { Log.e(TAG, "Cannot cast value for " + key + " to a Double: " + value, e); return null; } } } public Float getAsFloat(String key) { Object value = mValues.get(key); try { return value != null ? ((Number) value).floatValue() : null; } catch (ClassCastException e) { if (value instanceof CharSequence) { try { return Float.valueOf(value.toString()); } catch (NumberFormatException e2) { Log.e(TAG, "Cannot parse Float value for " + value + " at key " + key); return null; } } else { Log.e(TAG, "Cannot cast value for " + key + " to a Float: " + value, e); return null; } } } public Boolean getAsBoolean(String key) { Object value = mValues.get(key); try { return (Boolean) value; } catch (ClassCastException e) { if (value instanceof CharSequence) { return Boolean.valueOf(value.toString()); } else if (value instanceof Number) { return ((Number) value).intValue() != 0; } else { Log.e(TAG, "Cannot cast value for " + key + " to a Boolean: " + value, e); return null; } } } public byte[] getAsByteArray(String key) { Object value = mValues.get(key); if (value instanceof byte[]) { return (byte[]) value; } else { return null; } }
通过上面的代码我们也能很直观的看到,不同的get方法通过调用不同类型的((Number)value).intValue方法强转一次获取,如果拿不到的话就返回null。
既然ContentValues是基于HashMap去实现操作的,那么我们有必要来看看HashMap到底是怎么回事?首先是HashMap类定义,源码如下所示:
public class HashMap<K, V> extends AbstractMap<K, V> implements Cloneable, Serializable{ }
通过上面的代码,我们可以看到HashMap是基于泛型去构建的,同时实现了克隆和序列化接口。这就意味着在一定程度上面,我们可以实例化任何类型的HashMap,并且使它具有克隆、序列化的功能,请看如下代码:
HashMap<Integer,Object> hashOne=new HashMap<>(); HashMap<String,Object> hashTwo=new HashMap<>(); HashMap<Boolean,Object> hashThree=new HashMap<>(); HashMap<Float,Object> hashFour=new HashMap<>();
只不过我们通常在项目里面一般都习惯使用String类型的key。好了,让我们继续往下看,首先最应该说的就是HashMapEntry内部静态类了,源码如下:
static class HashMapEntry<K, V> implements Entry<K, V> { final K key; V value; final int hash; HashMapEntry<K, V> next; HashMapEntry(K key, V value, int hash, HashMapEntry<K, V> next) { this.key = key; this.value = value; this.hash = hash; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } @Override public final boolean equals(Object o) { if (!(o instanceof Entry)) { return false; } Entry<?, ?> e = (Entry<?, ?>) o; return Objects.equal(e.getKey(), key) && Objects.equal(e.getValue(), value); } @Override public final int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } @Override public final String toString() { return key + "=" + value; } }
HashMapEntry类实现了Entry接口,而Entry接口又是Map接口里面的一个内部接口。通过实现Entry接口,从而使HashMap具有了getKey/getValue/setValue等相关功能。同时我们可以看到HashMap里面好多功能的实现都是针对HashMapEntry展开的。另外HashMap还有个比较重要的概念就是Set接口,让我们来看看里面final类型的私有内部类EntrySet,源码如下:
private final class EntrySet extends AbstractSet<Entry<K, V>> { public Iterator<Entry<K, V>> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Entry)) return false; Entry<?, ?> e = (Entry<?, ?>) o; return containsMapping(e.getKey(), e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Entry)) return false; Entry<?, ?> e = (Entry<?, ?>)o; return removeMapping(e.getKey(), e.getValue()); } public int size() { return size; } public boolean isEmpty() { return size == 0; } public void clear() { HashMap.this.clear(); } }
正如其名一样,Set接口里面主要是提供HashMap的设置相关操作。让我们来看看Set接口里面的源码,如下:
public boolean add(E object); public boolean addAll(Collection<? extends E> collection); public void clear(); public boolean contains(Object object); public boolean containsAll(Collection<?> collection); public boolean equals(Object object); public int hashCode(); public boolean isEmpty(); public Iterator<E> iterator(); public boolean remove(Object object); public boolean removeAll(Collection<?> collection); public boolean retainAll(Collection<?> collection); public int size(); public Object[] toArray(); public <T> T[] toArray(T[] array);
好了,今天博客就到这里。技术有限,如有不对欢迎拍砖!