(转载请注明出处)
这一篇打算分析一下一般情况下,针对多源传感器融合的的非线性最小二乘优化,其增量方程的结构。
假设描述利用M个传感器信息进行融合的优化问题如下:$$
ag{1} label{1}
egin{array}{l}
min mathop {arg }limits_{f{x}} left( {left| {{{f{f}}1}left( {f{x}}
ight)}
ight|{{{pmb{Omega }}_1}}^2 + left| {{{f{f}}2}left( {f{x}}
ight)}
ight|{{{pmb{Omega }}2}}^2 + cdots left| {{{f{f}}M}left( {f{x}}
ight)}
ight|{{{pmb{Omega }}M}}^2}
ight)
= min mathop {arg }limits{f{x}} sumlimits{k = 1}^M {left| {{{f{f}}k}left( {f{x}}
ight)}
ight|{{{pmb{Omega }}_k}}^2}
end{array}
ag{2} label{2}
{pmb{Omega }} = left[ {egin{array}{*{20}{c}}
{{{pmb{Omega }}_1}}&{}&{}
{}& ddots &{}
{}&{}&{{{pmb{Omega }}_M}}
end{array}}
ight]
ag{3} label{3}
min mathop {arg }limits_{f{x}} left| {{f{f}}left( {f{x}}
ight)}
ight|_{pmb{Omega }}^2
ag{4} label{4}
{f{f}}left( {f{x}}
ight) = {left[ {egin{array}{*{20}{c}}
{{f{f}}_1^Tleft( {f{x}}
ight)}& cdots &{{f{f}}_1^Tleft( {f{x}}
ight)}
end{array}}
ight]^T}
ag{5} label{5}
{f{H}} = left[ {egin{array}{*{20}{c}}
{{{f{H}}{11}}}& cdots &{{{f{H}}{1l}}}& cdots &{{{f{H}}{1L}}}
vdots & ddots &{}&{}& vdots
{{f{H}}{1l}^T}&{}&{{{f{H}}{ll}}}&{}&{{{f{H}}{lL}}}
vdots &{}&{}& ddots & vdots
{{f{H}}{1L}^T}& cdots &{{f{H}}{lL}^T}& cdots &{{{f{H}}_{LL}}}
end{array}}
ight]