sklearn数据集
数据集API介绍
sklearn.datasets
- 加载获取流行数据集
- datasets.load_*()
- 获取小规模数据集,数据包含在datasets里
- datasets.fetch_*(data_home=None)
- 获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/
sklearn小数据集
-
sklearn.datasets.load_iris()
加载并返回鸢尾花数据集
-
sklearn.datasets.load_boston()
加载并返回波士顿房价数据集
sklearn大数据集
- sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)
- subset:'train'或者'test','all',可选,选择要加载的数据集。
- 训练集的“训练”,测试集的“测试”,两者的“全部”
sklearn数据集的使用
sklearn数据集返回值介绍
- load和fetch返回的数据类型datasets.base.Bunch(字典格式)如下:
- data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
- target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
- DESCR:数据描述
- feature_names:特征名,新闻数据,手写数字、回归数据集没有
- target_names:标签名
def datasets_demo():
"""
sklearn数据集使用
"""
#获取数据集
iris=load_iris()
print("鸢尾花数据集:
",iris)
print("查看数据集描述:
",iris.DESCR)
print("查看特征值的名字:
",iris.feature_names)
print("查看特征值:
",iris.data,iris.data.shape)
#数据集划分
# 训练集的特征值x_train 测试集的特征值x_test 训练集的目标值y_train 测试集的目标值y_test
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.2,random_state=22)
#训练集的特征值
print("训练集的特征值:
",x_train,x_train.shape )
# 随机数种子
x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6)
x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6)
print("如果随机数种子不一致:
", x_train == x_train1)
print("如果随机数种子一致:
", x_train1 == x_train2)
return None
特征提取
字典特征提取
作用:对字典数据进行特征值化
- sklearn.feature_extraction.DictVectorizer(sparse=True,…)
- DictVectorizer.fit_transform(X) X:字典或者包含字典的迭代器返回值:返回sparse矩阵
- DictVectorizer.inverse_transform(X) X:array数组或者sparse矩阵 返回值:转换之前数据格式
- DictVectorizer.get_feature_names() 返回类别名称
我们对以下数据进行特征提取
[{'city': '北京','temperature':100}
{'city': '上海','temperature':60}
{'city': '深圳','temperature':30}]
def dict_demo():
"""
对字典类型的数据进行特征抽取
:return: None
"""
data = [{'city': '北京', 'temperature': 100}, {'city': '上海', 'temperature': 60}, {'city': '深圳', 'temperature': 30}]
# 1、实例化一个转换器类
transfer = DictVectorizer(sparse=False)
# 2、调用fit_transform
data = transfer.fit_transform(data)
print("返回的结果:
", data)
# 打印特征名字
print("特征名字:
", transfer.get_feature_names())
return None
对于特征当中存在类别信息的我们都会做one-hot编码处理